华东师范大学学报(自然科学版) ›› 2022, Vol. 2022 ›› Issue (2): 9-15.doi: 10.3969/j.issn.1000-5641.2022.02.002

• 数学 • 上一篇    下一篇

非紧空间上折现Hamilton-Jacobi方程的粘性解

陈苏婷, 李霞*()   

  1. 苏州科技大学 数学科学学院, 江苏 苏州 215009
  • 收稿日期:2020-10-13 出版日期:2022-03-25 发布日期:2022-03-28
  • 通讯作者: 李霞 E-mail:lixia0527@188.com
  • 基金资助:
    国家自然科学基金(11971344)

The viscosity solution of the discounted Hamilton-Jacobi equation in non-compact space

Suting CHEN, Xia LI*()   

  1. School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou Jiangsu 215009, China
  • Received:2020-10-13 Online:2022-03-25 Published:2022-03-28
  • Contact: Xia LI E-mail:lixia0527@188.com

摘要:

折现Hamilton-Jacobi方程(简称H-J方程)作为接触H-J方程的一种特殊形式, 对其研究具有深刻意义. 研究了折现H-J方程在底空间非紧时粘性解的一个表达式 $u_{\lambda}(x,t)$ . 就一个具体的折现H-J方程, 探讨了在底空间非紧且 $\lambda>0$ 时, 在不同初值情形下, $u_{\lambda}(x,t)$ $t \rightarrow +\infty $ 时的收敛情况.

关键词: Hamilton-Jacobi方程, 接触系统, 粘性解

Abstract:

The discounted Hamilton-Jacobi equation (H-J equation) is a special form of the contact Hamilton-Jacobi equation; hence, study of the discounted H-J equation is important. In this article, we first study an expression of the viscosity solution $u_{\lambda}(x,t)$ for the discounted H-J equation in non-compact space. Then, we explore the convergence of the viscosity solution $u_{\lambda}(x,t)$ for a specific discounted H-J equation with $\lambda >0$ in non-compact space for the initial value in different cases.

Key words: Hamilton-Jacobi equation, contact system, viscosity solution

中图分类号: