1 |
NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information [M]. 10th Anniversary ed. [S.l.]: Cambridge University Press, 2011.
|
2 |
HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement. Reviews of Modern Physics, 2009, 81 (2): 865.
doi: 10.1103/RevModPhys.81.865
|
3 |
BENNETT C H, BRASSARD G, CRÉPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 1993, 70 (13): 1895- 1899.
doi: 10.1103/PhysRevLett.70.1895
|
4 |
EKERT A K. Quantum cryptography based on Bell’s theorem. Physical Review Letters, 1991, 67 (6): 661.
doi: 10.1103/PhysRevLett.67.661
|
5 |
BYRNES T, ROSSEAU D, KHOSLA M, et al. Macroscopic quantum information processing using spin coherent states. Optics Communications, 2015, 337, 102- 109.
doi: 10.1016/j.optcom.2014.08.017
|
6 |
BYRNES T, WEN K, YAMAMOTO Y. Macroscopic quantum computation using Bose-Einstein condensates. Physical Review A, 2012, 85 (4): 4233- 4237.
|
7 |
GROVER L K. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 1997, 79 (2): 325.
doi: 10.1103/PhysRevLett.79.325
|
8 |
FADEL M, ZIBOLD T, DÉCAMPS B, et al. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates. Science, 2018, 360 (6387): 409- 413.
doi: 10.1126/science.aao1850
|
9 |
KUNKEL P, PRÜFER M, STROBEL H, et al. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science, 2018, 360 (6387): 413- 416.
doi: 10.1126/science.aao2254
|
10 |
LANGE K, PEISE J, LÜCKE B, et al. Entanglement between two spatially separated atomic modes. Science, 2018, 360 (6387): 416- 418.
doi: 10.1126/science.aao2035
|
11 |
BYRNES T, ILO-OKEKE E O. Quantum Atom Optics: Theory and Applications to Quantum Technology [M]. [S.l.]: Cambridge University Press, 2021.
|
12 |
GROSS C. Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates [J]. Journal of Physics B, 2012, 45(10): 103001.
|
13 |
SØRENSEN A, DUAN L M, CIRAC J I, et al. Many-particle entanglement with Bose–Einstein condensates. Nature, 2001, 409 (6816): 63- 66.
doi: 10.1038/35051038
|
14 |
MACHIDA S, YAMAMOTO Y, ITAYA Y. Observation of amplitude squeezing in a constant-current–driven semiconductor laser. Physical Review Letters, 1987, 58 (10): 1000- 1003.
doi: 10.1103/PhysRevLett.58.1000
|
15 |
WU L A, KIMBLE H J, HALL J L, et al. Generation of squeezed states by parametric down conversion. Physical Review Letters, 1986, 57 (20): 2520- 2523.
doi: 10.1103/PhysRevLett.57.2520
|
16 |
SLUSHER R E, HOLLBERG L W, YURKE B, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity. Physical Review Letters, 1985, 55 (22): 2409- 2412.
doi: 10.1103/PhysRevLett.55.2409
|
17 |
BREITENBACH G, SCHILLER S, MLYNEK J. Measurement of the quantum states of squeezed light. Nature, 1997, 387 (6632): 471- 475.
doi: 10.1038/387471a0
|
18 |
MACOMBER J D, LYNCH R. Squeezed spin states. The Journal of Chemical Physics, 1985, 83 (12): 6514- 6519.
doi: 10.1063/1.449838
|
19 |
WALLS D F, ZOLLER P. Reduced quantum fluctuations in resonance fluorescence. Physical Review Letters, 1981, 47 (10): 709- 711.
doi: 10.1103/PhysRevLett.47.709
|
20 |
WODKIEWICZ K, EBERLY J H. Coherent states, squeezed fluctuations, and the SU(2) am SU(1,1) groups in quantum-optics applications. Journal of the Optical Society of America B, 1985, 2 (3): 458- 466.
doi: 10.1364/JOSAB.2.000458
|
21 |
KITAGAWA M, UEDA M. Squeezed spin states. Physical Review A, 1993, 47 (6): 5138- 5143.
doi: 10.1103/PhysRevA.47.5138
|
22 |
MUESSEL W, STROBEL H, LINNEMANN D, et al. Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. Physical Review Letters, 2014, 113 (10): 103004.
doi: 10.1103/PhysRevLett.113.103004
|
23 |
HALD J, SØRENSEN J L, SCHORI C, et al. Spin squeezed atoms: A macroscopic entangled ensemble created by light. Physical Review Letters, 1999, 83 (7): 1319- 1322.
doi: 10.1103/PhysRevLett.83.1319
|
24 |
NAVARRETE-BENLLOCH C . Quantum information with continuous variables [M]// An Introduction to the Formalism of Quantum Information with Continuous Variables. [S.l]:[s.n.], 2015.
|
25 |
MOXLEY F, DOWLING J, DAI W, et al. Sagnac interferometry with coherent vortex superposition states in exciton-polariton condensates. Physical Review A, 2016, 93, 053603.
doi: 10.1103/PhysRevA.93.053603
|
26 |
HILLERY M. Quantum cryptography with squeezed states. Physical Review A, 2000, 61 (2): 022309.
doi: 10.1103/PhysRevA.61.022309
|
27 |
BONDURANT R S, SHAPIRO J H. Squeezed states in phase-sensing interferometers. Physical Review D Particles & Fields, 1984, 30 (12): 2548- 2556.
|
28 |
BREUER H P, PETRUCCIONE F. The Theory of Open Quantum Systems [M]. [S.l.]: Oxford University Press, 2002.
|
29 |
REICHEL J, VULETIC V. Atom Chips [M]. [S.l.]: John Wiley & Sons, 2011.
|
30 |
WHITLOCK S, GERRITSMA R, FERNHOLZ T, et al. Two-dimensional array of microtraps with atomic shift register on a chip. New Journal of Physics, 2009, 11 (2): 023021.
doi: 10.1088/1367-2630/11/2/023021
|
31 |
ABDELRAHMAN A, MUKAI T, HÄFFNER H, et al. Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps. Optics Express, 2014, 22 (3): 3501- 3513.
doi: 10.1364/OE.22.003501
|
32 |
BÖHI P, RIEDEL M F, HOFFROGGE J, et al. Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip. Nature Physics, 2009, 5 (8): 592- 597.
doi: 10.1038/nphys1329
|
33 |
RIEDEL M F, BÖHI P, LI Y, et al. Atom-chip-based generation of entanglement for quantum metrology. Nature, 2010, 464 (7292): 1170- 1173.
doi: 10.1038/nature08988
|
34 |
ILO-OKEKE E O, BYRNES T. Information and backaction due to phase-contrast-imaging measurements of cold atomic gases: Beyond Gaussian states. Physical Review A, 2016, 94 (1): 013617.
doi: 10.1103/PhysRevA.94.013617
|
35 |
LONE M Q, BYRNES T. Suppression of the ac-Stark-shift scattering rate due to non-Markovian behavior. Physical Review A, 2015, 92 (1): 011401.
doi: 10.1103/PhysRevA.92.011401
|
36 |
VIDAL G, WERNER R F. Computable measure of entanglement. Physical Review A, 2002, 65 (3): 032314.
doi: 10.1103/PhysRevA.65.032314
|
37 |
PLENIO M B. Logarithmic negativity: A full entanglement monotone that is not convex. Physical Review Letters, 2005, 95 (9): 090503.
doi: 10.1103/PhysRevLett.95.090503
|
38 |
BYRNES T. Fractality and macroscopic entanglement in two-component Bose-Einstein condensates. Physical Review A, 2013, 88 (2): 023609.
doi: 10.1103/PhysRevA.88.023609
|
39 |
LIDAR D A, WHALEY K B. Decoherence-free subspaces and subsystems [M]// Irreversible Quantum Dynamics, Lecture Notes in Physics, vol 622. Berlin: Springer, Berlin, 2003: 83-120.
|