1 |
GONG C, LI L, LI Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546 (7657): 265- 269.
doi: 10.1038/nature22060
|
2 |
HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546 (7657): 270- 273.
doi: 10.1038/nature22391
|
3 |
O’HARA D. J, ZHU T C, TROUT A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Letters, 2018, 18 (5): 3125- 3131.
doi: 10.1021/acs.nanolett.8b00683
|
4 |
BONILLA M, KOLEKAR S, MA Y J, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates . Nature Nanotechnol., 2018, 13 (4): 289- 293.
doi: 10.1038/s41565-018-0063-9
|
5 |
LI J, ZHAO B, CHEN P, et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates . Advanced Materials, 2018, 30 (36): 1801043.
doi: 10.1002/adma.201801043
|
6 |
SUN X, LI W Y, WANG X, et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Research, 2020, 13 (12): 3358- 3363.
doi: 10.1007/s12274-020-3021-4
|
7 |
HUANG B, CLARK G, KLEIN D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nature Nanotechnology, 2018, 13 (7): 544- 548.
doi: 10.1038/s41565-018-0121-3
|
8 |
JIANG S, LI L Z, WANG Z F, et al. Controlling magnetism in 2D CrI3 by electrostatic doping . Nature Nanotechnology, 2018, 13 (7): 549- 553.
doi: 10.1038/s41565-018-0135-x
|
9 |
LIU H, WANG X S, WU J X, et al. Vapor deposition of magnetic van der Waals NiI2 crystals . ACS Nano, 2020, 14 (8): 10544- 10551.
doi: 10.1021/acsnano.0c04499
|
10 |
LIU Y, WANG W, LU H Y, et al. The environmental stability characterization of exfoliated few-layer CrXTe3 (X=Si, Ge) nanosheets . Applied Surface Science, 2020, (511): 145452.
|
11 |
DENG Y, YU Y J, SONG Y C, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563 (7729): 94- 99.
doi: 10.1038/s41586-018-0626-9
|
12 |
KHAZAEI M, ARAI M, SASAKI T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 2013, 23 (17): 2185- 2192.
doi: 10.1002/adfm.201202502
|
13 |
KUMAR H, FREY N C, DONG L, et al. Tunable magnetism and transport properties in nitride MXenes. ACS Nano, 2017, 11 (8): 7648- 7655.
doi: 10.1021/acsnano.7b02578
|
14 |
HU Y, LIU X Y, SHEN Z H, et al. High Curie temperature and carrier mobility of novel Fe, Co and Ni carbide MXenes. Nanoscale, 2020, 12 (21): 11627- 11637.
doi: 10.1039/C9NR10927G
|
15 |
WANG B, ZHANG Y H, MA L, et al. MnX (X = P, As) monolayers a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy . Nanoscale, 2019, 11 (10): 4204- 4209.
doi: 10.1039/C8NR09734H
|
16 |
MOGULKOC A, MODARRESI M, RUDENKO A N. Two-dimensional chromium pnictides CrX(X= P, As, Sb): Half-metallic ferromagnets with high Curie temperature . Physical Review B, 2020, 102 (2): 024441.
doi: 10.1103/PhysRevB.102.024441
|
17 |
WU Q, ZHANG Y H, ZHOU Q H, et al. Transition-metal dihydride monolayers: A new family of two-dimensional ferromagnetic materials with intrinsic room-temperature half-metallicity. Journal of Physical Chemistry Letters, 2018, 9 (15): 4260- 4266.
doi: 10.1021/acs.jpclett.8b01976
|
18 |
ZHU Y, KONG X H, RHONE T D, et al. Systematic search for two-dimensional ferromagnetic materials. Physical Review Materials, 2018, 2 (8): 081001.
doi: 10.1103/PhysRevMaterials.2.081001
|
19 |
LU S, ZHOU Q H, GUO Y L, et al. Coupling a crystal graph multilayer descriptor to active learning for rapid discovery of 2D ferromagnetic semiconductors/half-metals/metals. Advanced Materials, 2020, 32 (29): 2002658.
doi: 10.1002/adma.202002658
|
20 |
JIANG P, WANG C, CHEN D C, et al. Stacking tunable interlayer magnetism in bilayer CrI3. Physical Review B, 2019, 99 (14): 144401.
doi: 10.1103/PhysRevB.99.144401
|
21 |
WANG C, ZHOU X Y, ZHOU L W, et al. Bethe-Slater-curve-like behavior and interlayer spin-exchange coupling mechanisms in two-dimensional magnetic bilayers. Physical Review B, 2020, 102 (2): 020402.
|
22 |
MAY A F, OVCHINNIKOV D, ZHENG Q, et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano, 2019, 13 (4): 4436- 4442.
doi: 10.1021/acsnano.8b09660
|
23 |
KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, (54): 11169- 11186.
|
24 |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1997, 78 (7): 1396- 1396.
|
25 |
DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study . Physical Review B, 1998, 57 (3): 1505- 1509.
doi: 10.1103/PhysRevB.57.1505
|
26 |
ANISIMOV V V, ZAANEN J, ANDERSEN O K. Band theory and mott insulators: Hubbard U instead of stoner I . Physical Review B, 1991, 44 (3): 943- 954.
doi: 10.1103/PhysRevB.44.943
|
27 |
LI X, YANG J. CrXTe3(X = Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors . Journal of Materials Chemistry C, 2014, 2 (34): 7071- 7076.
doi: 10.1039/C4TC01193G
|
28 |
DONG L, KUMAR H, ANASORI B, et al. Rational design of two-dimensional metallic and semiconducting spintronic materials based on ordered double-transition-metal MXenes. Journal of Physical Chemistry Letters, 2017, 8 (2): 422- 428.
doi: 10.1021/acs.jpclett.6b02751
|
29 |
MONKHORST H J, PACK J D. Special points for brillouin-zone integrations. Physical Review B, 1976, 13 (12): 5188- 5192.
doi: 10.1103/PhysRevB.13.5188
|
30 |
TOGO A, TANAKA I. First principles phonon calculations in materials science. Scripta Materialia, 2015, 108, 1- 5.
doi: 10.1016/j.scriptamat.2015.07.021
|
31 |
BARONI S, GIRONCOLI S D, CORSO A D, et al. Phonons and related properties of extended systems from density functional perturbation theory. Review of Modern Physics, 2001, (73): 515- 562.
|
32 |
GOODENOUGH J B. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Physical Review, 1955, 100 (2): 564- 573.
doi: 10.1103/PhysRev.100.564
|
33 |
ANDERSON P W. New approach to the theory of superexchange interactions. Physical Review, 1959, 115 (1): 2- 13.
doi: 10.1103/PhysRev.115.2
|