Review Articles

Nutritional epidemiology methods and related statistical challenges and opportunities

Ross L. Prentice ,

Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA

Ying Huang

Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA

Pages 2-10 | Received 07 Sep. 2017, Accepted 14 Apr. 2018, Published online: 17 May. 2018,
  • Abstract
  • Full Article
  • References
  • Citations


The public health importance of nutritional epidemiology research is discussed, along with methodological challenges to obtaining reliable information on dietary approaches to chronic disease prevention. Measurement issues in assessing dietary intake need to be addressed to obtain reliable disease association information. Self-reported dietary data typically incorporate major random and systematic biases. Intake biomarkers offer potential for more reliable analyses, but biomarkers have been established only for a few dietary variables, and these may be too expensive to apply to all participants in large epidemiologic cohorts. A possible way forward involves additional nutritional biomarker development using high-dimensional metabolomic profiling, using blood and urine specimens, in conjunction with further development of statistical approaches for accommodating measurement error with failure time response data. Statisticians have the opportunity to contribute greatly to worldwide public health through the development of statistical methods to address these nutritional epidemiology research challenges, as is elaborated in this contribution.


  1. Armstrong, B., & Doll, R. (1975). Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. International Journal of Cancer, 15(4), 617631. doi: 10.1002/ijc.2910150411 [Google Scholar]
  2. Bibbins-Domingo, K., Chertow, G. M., Coxson, P. G., Moran, A., Lightwood, J. M., Pletcher, M. J., & Goldman, L. (2010). Projected effect of dietary salt reductions on future cardiovascular disease. New England Journal of Medicine, 362(7), 590599. doi: 10.1056/NEJMoa0907355 [Google Scholar]
  3. Bingham, S. A. (2003). Urine nitrogen as a biomarker for the validation of dietary protein intake. The Journal of Nutrition, 133(3), 921S924S. doi: 10.1093/jn/133.3.921S [Google Scholar]
  4. Breslow, N., McNeney, B., & Wellner, J. A. (2003). Large sample theory for semiparametric regression models with two-phase, outcome dependent sampling. The Annals of Statistics, 31(4), 11101139. doi: 10.1214/aos/1059655907 [Web of Science ®], [Google Scholar]
  5. Breslow, N., & Wellner, J. A. (2007). Weighted likelihood for semiparametric models and two-phase stratified samples, with application to cox regression. Scandinavian Journal of Statistics, 34(1), 86102. doi: 10.1111/j.1467-9469.2006.00523.x [Google Scholar]
  6. Carroll, R. J., Ruppert, D., Stefanski, L. A., & Crainiceanu, C. M. (2006). Measurement error in nonlinear models: A modern perspective (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC[Google Scholar]
  7. Cogswell, M. E., Wang, C. Y., Chen, T. C., Pfeiffer, C. M., Elliott, P., Gillespie, C. D., … Loria, C. M. (2013). Validity of predictive equations for 24-h urinary sodium excretion in adults aged 18–39 y. The American Journal of Clinical Nutrition, 98(6), 15021513. doi: 10.3945/ajcn.113.059436 [Google Scholar]
  8. Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society. Series B (Methodological), 34(2), 187220. Retrieved from [Google Scholar]
  9. Cox, D. R. (1975). Partial likelihood. Biometrika, 62(2), 269276. doi: 10.1093/biomet/62.2.269 [Google Scholar]
  10. Forman, D., Bray, F., Brewster, D. H., Gombe Mbalawa, C., Kohler, B., Piñeros, M., … Ferlay, J. (Eds.). (2014). Age-standardized and cumulative incidence rates and standard errors. In Cancer incidence in Five Continents Volume X. IARC Scientific Publication No. 164 (pp. 917–1252). Lyon: International Agency for Research on Cancer. [Google Scholar]
  11. Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: The Lasso and generalizations (No. 143). Boca Raton: Chapman and Hall, CRC Press[Google Scholar]
  12. Huang, Y., Van Horn, L., Tinker, L. F., Neuhouser, M. L., Carbone, L., Mossavar-Rahmani, Y., … Prentice, R. L. (2014). Measurement error corrected sodium and potassium intake estimation using 24-hour urinary excretion. Hypertension, 63(2), 238244. doi: 10.1161/HYPERTENSIONAHA.113.02218 [Google Scholar]
  13. Ji, C., Miller, M. A., Venezia, A., Strazzullo, P., & Cappuccio, F. (2014). Comparisons of spot vs 24-h urine samples for estimating population salt intake: Validation study in two independent samples of adults in Britain and Italy. Nutrition, Metabolism and Cardiovascular Diseases, 24(2), 140147. doi: 10.1016/j.numecd.2013.06.011 [Google Scholar]
  14. Ji, C., Sykes, L., Paul, C., Dary, O., Legetic, B., Campbell, N. R., & Cappuccio, F. P. (2012). Systematic review of studies comparing 24-hour and spot urine collections for estimating population salt intake. Revista Panamericana de Salud Pública, 32(4), 307315. doi: 10.1590/S1020-49892012001000010 [Google Scholar]
  15. Kalbfleisch, J. D., & Prentice, R. L. (2002). The statistical analysis of failure time data (2nd ed.). New York: Wiley and Sons[Google Scholar]
  16. Kawasaki, T., Itoh, K., Uezono, K., & Sasaki, H. (1993). A simple method for estimating 24 h urinary sodium and potassium excretion from second morning voiding urine specimen in adults. Clinical and Experimental Pharmacology and Physiology, 20(1), 714. doi: 10.1111/j.1440-1681.1993.tb01496.x [Google Scholar]
  17. Lampe, J. W., Huang, Y., Neuhouser, M. L., Tinker, L. F., Song, X., Schoeller, D. A., … Prentice, R. L. (2017). Dietary biomarker evaluation in a controlled feeding study in women from the women's health initiative cohort. The American Journal of Clinical Nutrition, 105(2), 466475. doi: 10.3945/ajcn.116.144840 [Google Scholar]
  18. Luft, F., Fineberg, N., & Sloan, R. (1982). Estimating dietary sodium intake in individuals receiving a randomly fluctuating intake. Hypertension, 4(6), 805808. doi: 10.1161/01.HYP.4.6.805 [Google Scholar]
  19. Mozaffarian, D., Fahimi, S., Singh, G. M., Micha, R., Khatibzadeh, S., Engell, R. E., & Powles, J. (2014). Global sodium consumption and death from cardiovascular causes. New England Journal of Medicine, 371(7), 624634. doi: 10.1056/NEJMoa1304127 [Google Scholar]
  20. O'Donnell, M., Mente, A., Rangarajan, S., McQueen, M. J., Wang, X., Liu, L., … Yusuf, S. (2014). Urinary sodium and potassium excretion, mortality, and cardiovascular events. New England Journal of Medicine, 371, 612623. doi: 10.1056/NEJMoa1311889 [Google Scholar]
  21. Oparil, S. (2014). Low sodium intake-cardiovascular health benefit or risk? New England Journal of Medicine, 371(7), 677679. doi: 10.1056/NEJMe1407695 [Google Scholar]
  22. Oria, M., Yaktine, A. L., & Strom, B. L. (2013). Sodium intake in populations: Assessment of evidence. Washington, DC: National Academies Press[Google Scholar]
  23. Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika, 69(2), 331342. doi: 10.1093/biomet/69.2.331 [Google Scholar]
  24. Prentice, R. L. (1986). A case–cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika, 73(1), 111. doi: 10.1093/biomet/73.1.1 [Google Scholar]
  25. Prentice, R. L., & Breslow, N. E. (1978). Retrospective studies and failure time models. Biometrika, 65(1), 153158. doi: 10.1093/biomet/65.1.153 [Google Scholar]
  26. Prentice, R. L., Huang, Y., Neuhouser, M. L., Manson, J. E., Mossavar-Rahmani, Y., Thomas, F., … Van Horn, L. (2017). Biomarker calibrated sodium and potassium intake and cardiovascular disease risk among postmenopausal women. American Journal of Epidemiology, 186(9), 10351043. doi: 10.1093/aje/kwx238 [Google Scholar]
  27. Prentice, R. L., Mossavar-Rahmani, Y., Huang, Y., Van Horn, L., Beresford, S. A., Caan, B., … Neuhouser, M. L. (2011). Evaluation and comparison of food records, recalls, and frequencies for energy and protein assessment by using recovery biomarkers. American Journal of Epidemiology, 174(5), 591603. doi: 10.1093/aje/kwr140 [Google Scholar]
  28. Prentice, R. L., & Sheppard, L. (1990). Dietary fat and cancer: Consistency of the epidemiologic data, and disease prevention that may follow from a practical reduction in fat consumption. Cancer Causes and Control, 1(1), 8197. doi: 10.1007/BF00053187 [Google Scholar]
  29. Rakova, N., Jüttner, K., Dahlmann, A., Schröder, A., Linz, P., Kopp, C., … Titze, J. (2013). Long-term space flight simulation reveals infradian rhythmicity in human Na+ balance. Cell Metabolism, 17(1), 125131. doi: 10.1016/j.cmet.2012.11.013 [Google Scholar]
  30. Schoeller, D. A. (1999). Recent advances from application of doubly labeled water to measurement of human energy expenditure. The Journal of Nutrition, 129(10), 17651768. doi: 10.1093/jn/129.10.1765 [Google Scholar]
  31. Self, S. G., & Prentice, R. L. (1988). Asymptotic distribution theory and efficiency results for case–cohort studies. The Annals of Statistics, 16(1), 6481. doi: 10.1214/aos/1176350691 [Google Scholar]
  32. Song, X., Huang, Y., Neuhouser, M. L., Tinker, L. F., Vitolins, M. Z., Prentice, R. L., & Lampe, J. W. (2017). Dietary long-chain fatty acids and carbohydrate biomarker evaluation in a controlled feeding study in participants from the women's health initiative cohort. The American Journal of Clinical Nutrition, 105(6), 12721282[Google Scholar]
  33. Stamler, J., Rose, G., Stamler, R., Elliott, P., Marmot, M., Pyorala, K., … Sans, S. (1988). INTERSALT: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion.. British Medical Journal, 297(6644), 319328. doi: 10.1136/bmj.297.6644.319 [Google Scholar]
  34. Strazzullo, P., D'Elia, L., Kandala, N. B., & Cappuccio, F. P. (2009). Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. British Medical Journal, 339, b4567. doi: 10.1136/bmj.b4567 [Google Scholar]
  35. Thomas, D. C. (1977). Addendum to ‘Methods for cohort analysis: Appraisal by application of asbestos mining’ by F. D. K. Liddell, J. C. McDonald and D. C. Thomas. Journal of the Royal Statistical Society A, 140, 469491. doi: 10.2307/2345280 [Google Scholar]
  36. Tzoulaki, I., Patel, C. J., Okamura, T., Chan, Q., Brown, I. J., Miura, K., … Elliott, P. (2012). A nutrient-wide association study on blood pressure. Circulation, 126(21), 24562464. doi: 10.1161/CIRCULATIONAHA.112.114058 [Google Scholar]
  37. US Department of Health and Human Services, et al. (2015). 2015–2020 dietary guidelines for Americans. Washington, DC: USDA[Google Scholar]
  38. Whelton, P. K., He, J., Cutler, J. A., Brancati, F. L., Appel, L. J., Follmann, D., & Klag, M. J. (1997). Effects of oral potassium on blood pressure: Meta-analysis of randomized controlled clinical trials. Journal of the American Medical Association, 277(20), 16241632. doi: 10.1001/jama.1997.03540440058033 [Google Scholar]
  39. World Cancer Research Fund and American Institute for Cancer Research. (1997). Food, nutrition and the prevention of cancer: A global perspective (Tech. Rep.). Washington, DC. [Google Scholar]
  40. World Cancer Research Fund and American Institute for Cancer Research. (2007). Food, nutrition and the prevention of cancer: A global perspective (Tech. Rep.). Washington, DC. [Google Scholar]
  41. World Health Organization. (2003). Diet, nutrition and the prevention of chronic diseases: Report of a joint WHO/FAO expert consultation (Tech. Rep. No. 916). Geneva. [Google Scholar]
  42. Yang, Q., Liu, T., Kuklina, E. V., Flanders, W. D., Hong, Y., Gillespie, C., … Hu, F. B. (2011). Sodium and potassium intake and mortality among US adults: Prospective data from the Third National Health and Nutrition Examination Survey. Archives of Internal Medicine, 171(13), 11831191. doi: 10.1001/archinternmed.2011.257 [Google Scholar]