Review Articles

Objective Bayesian analysis for the accelerated degradation model using Wiener process with measurement errors

Daojiang He ,

Department of Statistics, Anhui Normal University, Wuhu, People's Republic of China

Yunpeng Wang ,

Department of Statistics, Anhui Normal University, Wuhu, People's Republic of China

Mingxiang Cao

Department of Statistics, Anhui Normal University, Wuhu, People's Republic of China

Pages 27-36 | Received 18 Jul. 2017, Accepted 14 Apr. 2018, Published online: 15 May. 2018,
  • Abstract
  • Full Article
  • References
  • Citations


The Wiener process as a degradation model plays an important role in the degradation analysis. In this paper, we propose an objective Bayesian analysis for an acceleration degradation Wiener model which is subjected to measurement errors. The Jeffreys prior and reference priors under different group orderings are first derived, the propriety of the posteriors is then validated. It is shown that two of the reference priors can yield proper posteriors while the others cannot. A simulation study is carried out to investigate the frequentist performance of the approach compared to the maximum likelihood method. Finally, the approach is applied to analyse a real data.


  1. Berger, J. (2006). The case for objective Bayesian analysis (with discussion). Bayesian Analysis, 1, 385402. doi: 10.1214/06-BA115 [Google Scholar]
  2. Berger, J. O., & Bernardo, J. M. (1992). Reference priors in a variance components problem. In P. K. Goel & N. S. Iyenger (Eds.), Bayesian analysis in statistics and econometrics (pp. 177–194). New York: Springer-Verlag. [Google Scholar]
  3. Berger, J. O., Bernardo, J. M., & Sun, D. C. (2009). The formal definition of reference priors. Annals of Statistics, 37, 905938. doi: 10.1214/07-AOS587 [Google Scholar]
  4. Berger, J. O., Oliveira, V., & Sanao, B. (2001). Objective Bayesian analysis of spatially correlated data. Journal of the American Statistical Association, 96, 13611374. doi: 10.1198/016214501753382282 [Taylor & Francis Online], [Google Scholar]
  5. Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal of the Royal Statistical Society, Series B, 41, 113128[Google Scholar]
  6. Doksum, K. A., & Hoyland, A. (1992). Models for variable-stress accelerated life testing experiments based on Wiener processes and the inverse Gaussian distribution. Technometrics, 34, 7482. doi: 10.2307/1269554 [Taylor & Francis Online], [Google Scholar]
  7. Guan, Q., Tang, Y. C., & Xu, A. C. (2016). Objective Bayesian analysis accelerated degradation test based on Wiener process models. Applied Mathematical Modelling, 40, 27432755. doi: 10.1016/j.apm.2015.09.076 [Google Scholar]
  8. He, L., He, D. J., & Cao, M. X. (2016). Objective Bayesian analysis of degradation model with respect to a Wiener process. Journal of Systems Science and Complexity, 29, 17371751. doi: 10.1007/s11424-016-5201-6 [Google Scholar]
  9. Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford: Oxford University Press[Google Scholar]
  10. Lee, M., & Tang, J. (2007). A modified EM-algorithm for estimating the parameters of inverse Gaussian distribution based on time-censored Wiener degradation data. Statistica Sinica, 17, 873893[Google Scholar]
  11. Liao, C. M., & Tseng, S. T. (2006). Optimal design for step-stress accelerated degradation tests. IEEE Transactions on Reliability, 55, 5966. doi: 10.1109/TR.2005.863811 [Google Scholar]
  12. Meeker, W. Q., & Escobar, L. A. (1998). Statistical methods for reliability data. New York: Wiley[Google Scholar]
  13. Nelson, W. (1990). Accelerated testing: Statistical models, test plans, and data analyses. New York: Wiley[Google Scholar]
  14. Peng, C., & Tseng, S. (2009). Mis-specification analysis of linear degradation models. IEEE Transactions on Reliability, 58, 444455. doi: 10.1109/TR.2009.2026784 [Google Scholar]
  15. Simgpurwalla, N. D. (1995). Survival in dynamic environments. Statistical Science, 10, 86103. doi: 10.1214/ss/1177010132 [Google Scholar]
  16. Sun, D. C., & Berger, J. O. (1998). Reference priors with partial information. Biometrika, 85, 5571. doi: 10.1093/biomet/85.1.55 [Google Scholar]
  17. Tang, L. C., Yang, G., & Xie, M. (2004). Planning of step-stress accelerated degradation test. Annual Reliability and Maintainability, Symposium RAMS, 2004, 287292[Google Scholar]
  18. Xu, A. C., & Tang, Y. C. (2012). Objective Bayesian analysis for linear degradation models. Communications in Statistics: Theory and Methods, 41, 40344046. doi: 10.1080/03610926.2012.705942 [Taylor & Francis Online], [Google Scholar]
  19. Ye, Z. S., & Chen, N. (2014). The inverse Gaussian process as a degradation model. Technometrics, 56, 302311. doi: 10.1080/00401706.2013.830074 [Taylor & Francis Online], [Google Scholar]
  20. Ye, Z. S., Chen, N., & Shen, Y. (2015). A new class of Wiener process models for degradation analysis. Reliability Engineering and System Safety, 139, 5867. doi: 10.1016/j.ress.2015.02.005 [Google Scholar]
  21. Ye, Z. S., Shen, Y., & Xie, M. (2012). Degradation-based burn-in with preventive maintenance. European Journal of Operational Research, 221, 360367. doi: 10.1016/j.ejor.2012.03.028 [Google Scholar]
  22. Zhao, W., & Elsayed, E. (2004). An accelerated life testing model involving performance degradation. Reliability and Maintainability, Symposium RAMS, 2004, 324329[Google Scholar]