References
- Barkto, J. (1966). The intraclass correlation coefficient as a measure of reliability. Psychological Reports, 19, 2–11. [Google Scholar]
- Berger, J. O., & Bernardo, J. M. (1992a). On the development of reference priors. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics, 4 (Peñíscola, 1991) (pp. 35–60). New York: Oxford University Press. [Google Scholar]
- Berger, J. O., & Bernardo, J. M. (1992b). Reference priors in a variance components problem. In P. K. Goel & N. Sreenivas Iyengar (Eds.), Lecture notes in statistics: Vol. 75. Bayesian analysis in statistics and econometrics (Bangalore, 1988) (pp. 177–194). New York: Springer. [Google Scholar]
- Bernardo, J. (2010). Integrated objective Bayesian estimation and hypothesis testing. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, & M. West (Eds.), Bayesian statistics, 9. Proceedings of the ninth valencia international meeting (pp. 1–68). New York: Oxford University Press. [Google Scholar]
- Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal of the Royal Statistical Society. Series B (Methodological), 41, 113–147. [Google Scholar]
- Bernardo, J. M. (1999). Nested hypothesis testing: The Bayesian reference criterion. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics, 6 (Alcoceber, 1998) (pp. 101–130). New York: Oxford University Press. [Google Scholar]
- Bernardo, J. M. (2005). Reference analysis. In D. K. Dey & C. R. Rao (Eds.), Handbook of Statistics: Vol. 25. Bayesian thinking: Modeling and computation (pp. 17–90). Amsterdam: Elsevier/North-Holland. [Google Scholar]
- Bernardo, J. M., & Juárez, M. A. (2003). Intrinsic estimation. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, & M. West (Eds.), Bayesian statistics, 7 (Tenerife, 2002) (pp. 465–476). New York: Oxford University Press. [Google Scholar]
- Bernardo, J. M., & Pérez, S. (2007). Comparing normal means: New methods for an old problem. Bayesian Analysis, 2, 45–58. doi: 10.1214/07-BA202 [Google Scholar]
- Bernardo, J. M., & Rueda, R. (2002). Bayesian hypothesis testing: A reference approach. International Statistical Review, 70, 351–372. doi: 10.1111/j.1751-5823.2002.tb00175.x [Google Scholar]
- Bernardo, J. M., & Smith, A. F. (1994). Bayesian theory. Chichester: Wiley. [Google Scholar]
- Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in statistical analysis. Reading, MA: Addison-Wesley. [Google Scholar]
- Chung, Y., & Dey, D. K. (1998). Bayesian approach to estimation of intraclass correlation using reference prior. Communications in Statistics: Theory and Methods, 27, 2241–2255. doi: 10.1080/03610929808832225 [Taylor & Francis Online], [Google Scholar]
- Datta, G. S., & Ghosh, J. K. (1995a). Noninformative priors for maximal invariant parameter in group models. TEST, 4, 95–114. doi: 10.1007/BF02563105 [Google Scholar]
- Datta, G. S., & Ghosh, J. K. (1995b). On priors providing frequentist validity for Bayesian inference. Biometrika, 82, 37–45. doi: 10.2307/2337625 [Google Scholar]
- Datta, G. S., & Mukerjee, R. (2004). Probability matching priors: Higher order asymptotics. Lecture notes in statistics: Vol. 178. New York: Springer-Verlag. [Google Scholar]
- Fleiss, J. (1986). The design and analysis of clinical experiments. New York: Wiley. [Google Scholar]
- Frees, E. W. (2004). Longitudinal and panel data: Analysis and applications in the social sciences. New York: Cambridge University Press. [Google Scholar]
- Ghosh, M., & Heo, J. (2003). Noninformative priors, credible sets and Bayesian hypothesis testing for the intraclass model. Journal of Statistical Planning and Inference, 112, 133–146. doi: 10.1016/S0378-3758(02)00328-2 [Google Scholar]
- Jelenkowska, T. H. (1998). Bayesian estimation of the intraclass correlation coefficients in the mixed linear model. Applications of Mathematics, 43, 103–110. doi: 10.1023/A:1023210900467 [Google Scholar]
- Lin, L., Hedayat, A. S., Sinha, B., & Yang, M. (2002). Statistical methods in assessing agreement: Models, issues, and tools. Journal of the American Statistical Association, 97, 257–270. doi: 10.1198/016214502753479392 [Taylor & Francis Online], [Google Scholar]
- Paul, S. R. (1990). Maximum likelihood estimation of intraclass correlation in the analysis of familial data: Estimating equation approach. Biometrika, 77, 549–555. doi: 10.1093/biomet/77.3.549 [Google Scholar]
- Paul, S. R. (1996). Score tests for interclass correlation in familial data. Biometrics, 52, 955–963. doi: 10.2307/2533056 [Google Scholar]
- Robert, C. P. (1996). Intrinsic losses. Theory and Decision, 40, 191–214. doi: 10.1007/BF00133173 [Google Scholar]
- Sun, D., & Ye, K. (1996). Frequentist validity of posterior quantiles for a two-parameter exponential family. Biometrika, 83, 55–65. doi: 10.1093/biomet/83.1.55 [Google Scholar]