Review Articles

A generalisation of the exponential distribution and its applications on modelling skewed data

Muhammad Zubair ,

Department of Statistics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; Department of Statistics, Government S.E College, Bahawalpur, Pakistan

Ayman Alzaatreh ,

Department of Mathematics and Statistics, American University of Sharjah, Sharjah, UAE

M. H. Tahir ,

Department of Statistics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

Muhammad Mansoor ,

Department of Statistics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

mansoor.abbasi143@gmail.com

Manat Mustafa

Pages 68-79 | Received 02 Nov. 2017, Accepted 14 Apr. 2018, Published online: 16 May. 2018,
  • Abstract
  • Full Article
  • References
  • Citations

ABSTRACT

In this paper, a generalisation of the exponential distribution, namely, Weibull exponentiated-exponential (WEE) distribution, is proposed. The shapes of the density function possess great flexibility. It can accommodate various hazard shapes such as reversed-J, increasing, decreasing, constant and upside-down bathtub. Various properties of the WEE distribution are studied including shape properties, quantile function, expressions for the moments and incomplete moments, probability weighted moments and Shannon entropy. We obtain the asymptotic distributions for the sample minimum and maximum. The model parameters are estimated by maximum likelihood. The usefulness of the new model is illustrated by means of two real lifetime data sets.

References

  1. Aarset, M. V. (1987). How to identify bathtub hazard rate. IEEE Transactions on Reliability, 36, 106108. doi: 10.1109/TR.1987.5222310 [Google Scholar]
  2. Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71, 6379. doi: 10.1007/s40300-013-0007-y [Google Scholar]
  3. Arnold, B. C., Balakrishnan, N., & Nagarajah, H. N. (2008). A first course in order statistics. New York: Wiley[Google Scholar]
  4. Barlow, R. E., & Campo, R. A. (1975). Total time on test processes and applications to failure data analysis. In: R. E. Barlow, J. B. Fussel, & N. D. Singpurwalla (Eds.), Reliability and fault tree analysis (pp. 451–481). Philadelphia: Society for Industrial and Applied Mathematics. [Google Scholar]
  5. Bjerkedal, T. (1960). Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. American Journal of Hygiene, 72, 130148[Google Scholar]
  6. Dey, A. K., & Kundu, D. (2009). Discriminating among the log-normal, Weibull and generalized exponential distributions. IEEE Transactions on Reliability, 58, 416424. doi: 10.1109/TR.2009.2019494 [Google Scholar]
  7. Gupta, R. C., Gupta, P. I., & Gupta, R. D. (1998). Modeling failure time data by Lehmann alternatives. Communications in Statistics – Theory and Methods, 27, 887904. doi: 10.1080/03610929808832134 [Taylor & Francis Online], [Google Scholar]
  8. Gupta, R. D., & Kundu, D. (1999). Generalized exponential distribution. Australian & New Zealand Journal of Statistics, 41, 173188. doi: 10.1111/1467-842X.00072 [Google Scholar]
  9. Gupta, R. D., & Kundu, D. (2001a). Generalized exponential distribution: An alternative to Gamma and Weibull distributions. Biometrical Journal, 43, 117130. doi: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R [Google Scholar]
  10. Gupta, R. D., & Kundu, D. (2001b). Generalized exponential distribution: Different methods of estimations. Journal of Statistical Computation and Simulation, 69, 315337. doi: 10.1080/00949650108812098 [Taylor & Francis Online], [Google Scholar]
  11. Gupta, R. D., & Kundu, D. (2002). Discriminating between the Weibull and the GE distributions. Computational Statistics and Data Analysis, 43, 179196. doi: 10.1016/S0167-9473(02)00206-2 [Google Scholar]
  12. Gupta, R. D., & Kundu, D. (2003). Closeness of gamma and generalized exponential distributions. Communications in Statistics– Theory and Methods, 32, 705721. doi: 10.1081/STA-120018824 [Taylor & Francis Online], [Google Scholar]
  13. Gupta, R. D., & Kundu, D. (2004). Discriminating between the gamma and generalized exponential distributions. Journal of Statistical Computation and Simulation, 74, 107121. doi: 10.1080/0094965031000114359 [Taylor & Francis Online], [Google Scholar]
  14. Gupta, R. D., & Kundu, D. (2006). On comparison of the Fisher information of the Weibull and GE distributions. Journal of Statistical Planning and Inference, 136, 31303144. doi: 10.1016/j.jspi.2004.11.013 [Google Scholar]
  15. Gupta, R. D., & Kundu, D. (2007). Generalized exponential distribution: Existing results and some recent developments. Journal of Statistical Planning and Inference, 137, 35373547. doi: 10.1016/j.jspi.2007.03.030 [Google Scholar]
  16. Gupta, R. D., & Kundu, D. (2008). Generalized exponential distribution: Bayesian Inference. Computational Statistics and Data Analysis, 52, 18731883. doi: 10.1016/j.csda.2007.06.004 [Google Scholar]
  17. Gupta, R. D., & Kundu, D. (2011). An extension of generalized exponential distribution. Statistical Methodology, 8, 485496. doi: 10.1016/j.stamet.2011.06.003 [Google Scholar]
  18. Kenney, J., & Keeping, E. (1962). Mathematics of statistics (Vol. 1, 3rd ed.). Princeton, NJ: Van Nostrand[Google Scholar]
  19. Kundu, D., Gupta, R. D., & Manglick, A. (2005). Discriminating between the log-normal and the generalized exponential distributions. Journal of Statistical Planning and Inference, 127, 213227. doi: 10.1016/j.jspi.2003.08.017 [Google Scholar]
  20. Lehmann, E. L. (1953). The power of rank tests. Annals of Mathematical Statistics, 24, 2343. doi: 10.1214/aoms/1177729080 [Google Scholar]
  21. Moors, J. J. A. (1998). A quantile alternative for kurtosis. The Statistician, 37, 2532. doi: 10.2307/2348376 [Google Scholar]
  22. Nadarajah, S. (2011). The exponentiated exponential distribution: A survey. AStA Advances in Statistical Analysis, 95, 219251. doi: 10.1007/s10182-011-0154-5 [Google Scholar]
  23. Nadarajah, S., & Kotz, S. (2006a). The exponentiated-type distributions. Acta Applicandae Mathematica, 92, 97111. doi: 10.1007/s10440-006-9055-0 [Google Scholar]
  24. Nadarajah, S., & Kotz, S. (2006b). The beta exponential distribution. Reliability and Engineering System Safety, 91, 689697. doi: 10.1016/j.ress.2005.05.008 [Google Scholar]
  25. Pakyari, R. (2010). Discriminating between generalized exponential, geometric extreme exponential and Weibull distribution. Journal of Statistical Computation and Simulation, 80, 14031412. doi: 10.1080/00949650903173306 [Taylor & Francis Online], [Google Scholar]
  26. Ristić, M. M., & Balakrishnan, N. (2012). The gamma-exponentiated exponential distribution. Journal of Statistical Computation and Simulation, 82, 11911206. doi: 10.1080/00949655.2011.574633 [Taylor & Francis Online], [Google Scholar]
  27. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379432. doi: 10.1002/j.1538-7305.1948.tb01338.x [Web of Science ®], [Google Scholar]
  28. Smith, R. L., & Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Applied Statistics, 36, 358369. doi: 10.2307/2347795 [Google Scholar]
  29. von Mises, R. (1936). La distribution de la plus grande de n valeurs. Revue Mathematique de lUnion Interbalcanique, 1, 141160[Google Scholar]