References
- Adichie, J. N. (1974). Rank score comparison of several regression parameters. The Annals of Statistics, 2, 396–402. doi: 10.1214/aos/1176342676 [Google Scholar]
- Chen, X., Wan, A. T. K., & Zhou, Y. (2015). Efficient quantile regression analysis with missing observations. Journal of the American Statistical Association, 110, 723–741. doi: 10.1080/01621459.2014.928219 [Taylor & Francis Online], [Google Scholar]
- Cook, R. D., & Weisberg, S. (1991). Discussion of ‘Sliced inverse regression for dimension reduction’. Journal of the American Statistical Association, 86, 328–332. [Taylor & Francis Online], [Google Scholar]
- Deng, J., & Wang, Q. (2017). Dimension reduction estimation for probability density with data missing at random when covariables are present. Journal of Statistical Planning and Inference, 181, 11–29. doi: 10.1016/j.jspi.2016.08.007 [Google Scholar]
- De Wet, T., & Van Wyk, J. W. J. (1979). Efficiency and robustness of Hogg's adaptive trimmed means. Communications in Statistics: Theory and Methods, 8, 117–128. doi: 10.1080/03610927908827743 [Taylor & Francis Online], [Google Scholar]
- Gong, G., & Samaniego, F. J. (1981). Pseudo maximum likelihood estimation: Theory and applications. The Annals of Statistics, 9, 861–869. doi: 10.1214/aos/1176345526 [Google Scholar]
- Hahn, J. (1998). On the role of the propensity score in efficient semiparametric estimation of average treatment effects. Econometrica, 66, 315–331. doi: 10.2307/2998560 [Google Scholar]
- Hahn, J. (2004). Functional restriction and efficiency in causal inference. Review of Economics and Statistics, 86, 73–76. doi: 10.1162/003465304323023688 [Google Scholar]
- Hirano, K., Imbens, G. W., & Ridder, G. (2003). Efficient estimation of average treatment effects using the estimated propensity score. Econometrica, 71, 1161–1189. doi: 10.1111/1468-0262.00442 [Google Scholar]
- Hsing, T., & Carroll, R. J. (1992). An asymptotic theory for sliced inverse regression. The Annals of Statistics, 20, 1040–1061. doi: 10.1214/aos/1176348669 [Google Scholar]
- Hu, Z., Follmann, D. A., & Wang, N. (2014). Estimation of mean response via the effective balancing score. Biometrika, 101, 613–624. doi: 10.1093/biomet/asu022 [Google Scholar]
- Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76, 243–263. doi: 10.1111/rssb.12027 [Google Scholar]
- Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Review of Economics and Statistics, 86, 4–29. doi: 10.1162/003465304323023651 [Google Scholar]
- Imbens, G. W., Newey, W., & Ridder, G. (2006). Mean-squared-error calculations for average treatment effects (Working Paper). [Google Scholar]
- Kang, J. D. Y., & Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science, 22, 523–539. doi: 10.1214/07-STS227 [Google Scholar]
- Li, K. C. (1991). Sliced inverse regression for dimension reduction. Journal of the American Statistical Association, 86, 316–327. doi: 10.1080/01621459.1991.10475035 [Taylor & Francis Online], [Google Scholar]
- Luo, W., Zhu, Y., & Ghosh, D. (2017). On estimating regression-based causal effects using sufficient dimension reduction. Biometrika, 104, 51–65. [Google Scholar]
- Raghavachari, M. (1965). On the efficiency of the normal scores test relative to the F-test. The Annals of Mathematical Statistics, 36, 1306–1307. doi: 10.1214/aoms/1177700005 [Google Scholar]
- Randles, R. H. (1982). On the asymptotic normality of statistics with estimated parameters. The Annals of Statistics, 10, 462–474. doi: 10.1214/aos/1176345787 [Google Scholar]
- Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41–55. doi: 10.1093/biomet/70.1.41 [Google Scholar]
- Wang, D., & Chen, S. X. (2009). Empirical likelihood for estimating equations with missing values. The Annals of Statistics, 37, 490–517. doi: 10.1214/07-AOS585 [Google Scholar]
- Wang, Q. (2007). M-estimators based on inverse probability weighted estimating equations with response missing at random. Communications in Statistics: Theory and Methods, 36, 1091–1103. doi: 10.1080/03610920601076917 [Taylor & Francis Online], [Google Scholar]
- Xia, Y., Tong, H., Li, W. K., & Zhu, L. X. (2002). An adaptive estimation of dimension reduction space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 363–410. doi: 10.1111/1467-9868.03411 [Google Scholar]
- Zhu, L. X., & Ng, K. W. (1995). Asymptotics of sliced inverse regression. Statistica Sinica, 5, 727–736. [Google Scholar]