[1] ZHANG Y, LIU J H, LI X, et al. The structure optimization of the carbon nanotube film cathode in the application of gas sensor[J]. Sensors and Actuators A, 2006, 128: 278-289.[2] SUMANASEKERA G U, ADU C K W, FANG S, et al. Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes[J]. Phy Rev Lett, 2000, 85: 1096-1099.[3] ZAHAB A, SPINA L, PONCHARAL P, et al. Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat[J]. Phy Rev B, 2000, 62: 10000-10003.[4] VARGHESE O K, KICHAMBRE P D, GONG D, et al. Gas sensing characteristics of multi-wall carbon nanotubes[J]. Sensors and Actuators B: Chemical, 2001, 81: 32-41.[5] VALENTINI L, ARMENTANO I, KENNY J M, et al. Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films[J]. Appl Phys Lett, 2003, 82: 961-963.[6] WANG M S, PENG L M, WANG J Y, et al. Electron field emission characteristics and field evaporation of a single carbon nanotube[J]. J Phys Chem B, 2005, 109: 110.[7] KENNETH A D, BURGIN T P, CHALAMALA B R. Evaporation of carbon nanotubes during electron field emission[J]. Appl Phys Lett, 2001, 79: 1873.[8] WANG Z L, GAO R P, HEER W A D, et al. In situ imaging of field emission from individual carbon nanotubes and their structural damage[J]. Appl Phys Lett, 2002, 80: 856.[9] CUI Y, WEI Q Q, PARK H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science, 2001, 293: 1289.[10] ZHANG Y F, GENG H J, ZHOU Z H, et al. Development of Inorganic Solar Cells by Nanotechnology[J]. Nano-Micro Lett, 2012, 4 (2): 124-134.[11] ZHAO F, CHENG G A, ZHENG R T, et al. Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires[J]. Nanoscale Research Letters, 2011, 6: 176.[12] LIU Z Q, PAN Z W, SUN L F, et al. Synthesis of silicon nanowires using AuPd nanoparticles catalyst on silicon substrate[J]. J Phys Chem Solids, 2000, 61: 1171.[13] MORALES A M, LIEBER C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science, 1998, 279: 208.[14] FENG S Q, YU D P, ZHANG H Z, et al. The growth mechanism of silicon nanowires and their quantum confinement effect[J]. J Crys Growth, 2000, 209: 513.[15] PENG K Q, HUANG Z P, ZHU J. Fabrication of large-area silicon nanowire p-n junction diode arrays[J]. Adv Mater, 2004, 16: 73-76.[16] WAN L J, GONG W L, JIANG K W, et al. Selective formation of silicon nanowires on pre-patterned substrates[J]. Appl Surf Sci, 2009, 255: 3752-3758.[17] MODI A, KORATKAR N, LASS E, et al. Miniaturized gas ionization sensors using carbon nanotubes[J]. Nature, 2003, 424: 171-174.[18] ZHANG Y, LIU J H, LI X, et al. The structure optimization of the carbon nanotube film cathode in the application of gas sensor[J]. Sens Actuators A, 2005, 125: 15-24.[19] LIAO L, LU H B, SHUAI M, et al. A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability[J]. Nanotechnology, 2008, 19: 175501.[20] SADEGHIAN R B, KAHRIZI M. A novel miniature gas ionization sensor based on freestanding gold nanowires[J]. Sens Actuators A: Physical, 2007, 137: 248-255.[21] FORBES R G, EDGCOMBE C J, VALDRE U. Some comments on models for field enhancement[J]. Ultramicroscopy, 2003, 95: 57-65.[22] RICHTER H, WANG Z P, LEY L. The one phonon Raman spectrum in microcrystalline silicon[J]. Solid State Commun, 1981, 39: 625-629.[23] CAMPBELL I H, FAUCHET P M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors[J]. Solid State Commun, 1986, 58: 739-741.[24] WANG R P, ZHOU G W, LIU Y L, et al. Raman spectral study of silicon nanowires: high-order scattering and phonon confinement effects[J]. Phys Rev B, 2000, 61: 16827-16832.[25] LI B B, YU D P, ZHANG S L. Raman spectral study of silicon nanowires[J]. Phys Rev B, 1999, 59: 1645-1648.[26] PISCANEC S, CANTORO M, FERRARI A C, et al. Robertson. Raman spectroscopy of silicon nanowires[J]. Phys Rev B, 2003, 68: 241312. |