In this paper, soil samples were collected from the red soil region of southern China (namely, the Sunjiaba small watershed in Yingtan, Jiangxi) across four different land-use types. Laboratory incubation experiments were subsequently carried out from June 2019 to October 2019. We used a closed chamber to measure soil greenhouse gases (CO2, CH4, N2O) simultaneously with the help of an advanced greenhouse gas analyzer (Picarro-G2508). The aim was to explore the response of soil greenhouse gas emissions across different land-use types to changes in temperature and soil moisture levels under the premise of global climate change. The results showed that the global warming potential (GWP) of the four land-use types increases with paddy, orangery, forest, and upland, respectively. This suggests that greenhouse gas emissions from paddy soils have the greatest relative impact on global warming. In a temperature-controlled experiment, soil CO2 emissions were shown to have a significant positive correlation with soil temperature. The Q10 values of soil respiration coefficients for the four land-use types were: 2.61 (forest), 2.51 (upland), 3.12 (orangery), and 3.17 (paddy). Thus, paddy soil respiration has the highest temperature sensitivity, indicating that paddy soil has a higher CO2 emission potential. Correlations were not significant between CH4 and N2O emissions to soil temperature. In the moisture-controlled experiment, the results indicated that soil CO2 emissions increased at the beginning and then decreased with increasing soil moisture, with the maximum emission rate at 20% GWC (gravity water content). CH4 emissions from paddy soils increased with soil moisture (R2 = 0.8875); CH4 fluxes from the other three land-use types, however, were not significantly related to soil moisture. The soil N2O emissions increased at the beginning and then decreased across the soil moisture range measured; all land-use types had the highest N2O fluxes at 25% GWC.