1 |
CISCO. Cisco visual networking index: Forecast and methodology, 2016–2021 [EB/OL]. (2017-06-15)[2020-06-24]. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualnetworking-indexvni/complete-white-paper-c11-481360.pdf.
|
2 |
KYLE Y. Read Dyn’s statement on the 10/21/2016 DNS DDoS attack [EB/OL]. (2016-10-21)[2020-06-24]. https://dyn.com/blog/dyn-statement-on-10212016-ddos-attack.html.
|
3 |
PATIL N V, KRISHNA C R, KUMAR K, et al. E-Had: A distributed and collaborative detection framework for early detection of DDoS attacks [J/OL]. Journal of King Saud University-Computer and Information Sciences, 2019. https://doi.org/10.1016/j.jksuci.2019.06.016.
|
4 |
PACHECO F, EXPOSITO E, GINESTE M, et al. Towards the deployment of machine learning solutions in network traffic classification: A systematic survey. IEEE Communications Surveys and Tutorials, 2018, 21(4), 1988- 2014.
|
5 |
INTERNET ASSIGNED NUMBERS AUTHORITY. Protocol Assignments [EB/OL]. (2011-12-17)[2020-06-24]. https://www.iana.org/protocols.
|
6 |
CALLADO A, KELNER J, SADOK D, et al. Better network traffic identification through the independent combination of techniques. Journal of Network and Computer Applications, 2010, 33 (4): 433- 446.
doi: 10.1016/j.jnca.2010.02.002
|
7 |
BELAVAGI M C, MUNIYAL B. Performance evaluation of supervised machine learning algorithms for intrusion detection. Procedia Computer Science, 2016, 89, 117- 123.
doi: 10.1016/j.procs.2016.06.016
|
8 |
OSANAIYE O, CAI H B, CHOO K K R, et al. Ensemble-based multi-filter feature selection method for DDoS detection in cloud computing [J]. EURASIP Journal on Wireless Communications and Networking, 2016: Article number 130. DOI: 10.1186/s13638-016-0623-3
|
9 |
HOQUE N, SINGH M, BHATTACHARYYA D K. EFS-MI: An ensemble feature selection method for classification. Complex & Intelligent Systems, 2018(4): 105-118.,
|
10 |
SINGH K J, DE T. Efficient classification of DDoS attacks using an ensemble feature selection algorithm. Journal of Intelligent Systems, 2017, 29 (1): 71- 83.
doi: 10.1515/jisys-2017-0472
|
11 |
KE G L, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree [C]// Advances in Neural Information Processing Systems (NIPS 2017). 2017: 3146-3154.
|
12 |
CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C] // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 785–794.
|
13 |
BOLÓN-CANEDO V, ALONSO-BETANZOS A. Ensembles for feature selection: A review and future trends. Information Fusion, 2019, 52, 1- 12.
doi: 10.1016/j.inffus.2018.11.008
|
14 |
HO T K. Random decision forests [C]// Proceedings of 3rd International Conference on Document Analysis and Recognition. IEEE,1995: 278-282.
|
15 |
BREIMAN L. Random forest. Machine Learning, 2001, 45, 5- 32.
doi: 10.1023/A:1010933404324
|
16 |
李航. 统计学习方法[M]. 2版. 北京: 清华大学出版社, 2019: 59-60.
|
17 |
CHEN T Q. Story and lessons behind the evolution of XGBoost [EB/OL]. (2016-03-10)[2020-06-24]. https://homes.cs.washington.edu/~tqchen/2016/03/10/story-and-lessons-behind-the-evolution-of-xgboost.html.
|
18 |
SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization [C]// Proceedings of the 4th International Conference on Information Systems Security and Privacy - ICISSP. 2018: 108-116.
|
19 |
LASHKARI A H, DRAPER-GIL G, MAMUN M S I, et al. Characterization of tor traffic using time based features [C]// Proceedings of the 3rd International Conference on Information Systems Security and Privacy - ICISSP. 2017: 253-262.
|