1 |
BONDY J A, MURTY U S R. Graph Theory with Applications [M]. New York: Macmilan Press Ltd, 1976.
|
2 |
PILŚNIAK M, WOŹNIAK M. On the total-neighbor-distinguishing index by sums. Graphs and Combinatorics, 2015, 31 (3): 771- 782.
doi: 10.1007/s00373-013-1399-4
|
3 |
DONG A J, WANG G H. Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree. Acta Mathematica Sinica (English Series), 2014, 30 (4): 703- 709.
doi: 10.1007/s10114-014-2454-7
|
4 |
HOCQUARD H, PRZYBYŁO J. On the total neighbour sum distinguishing index of graphs with bounded maximum average degree. Journal of Combinatorial Optimization, 2020, 39, 412- 424.
doi: 10.1007/s10878-019-00480-4
|
5 |
WANG J H, MA Q L, HAN X, et al. A proper total coloring distinguishing adjacent vertices by sums of planar graphs without intersecting triangles. Journal of Combinatorial Optimization, 2016, 32 (2): 626- 638.
doi: 10.1007/s10878-015-9886-6
|
6 |
YANG D L, SUN L, YU X W, et al. Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10. Applied Mathematics and Computation, 2017, 314, 456- 468.
doi: 10.1016/j.amc.2017.06.002
|
7 |
QU C Q, WANG G H, WU J L, et al. On the neighbor sum distinguishing total colorings of planar graphs. Theoretical Computer Science, 2016, 609, 162- 170.
doi: 10.1016/j.tcs.2015.09.017
|
8 |
SONG H J, PAN W H, GONG X N, et al. A note on the neighbor sum distinguishing total coloring of planar graphs. Theoretical Computer Science, 2016, 640, 125- 129.
doi: 10.1016/j.tcs.2016.06.007
|
9 |
SONG W Y, DUAN Y Y, MIAO L Y. Neighbor sum distinguishing total coloring of IC-planar graphs. Discrete Mathematics, 2020, 343 (8): 111918.
doi: 10.1016/j.disc.2020.111918
|
10 |
HAN M M, LU Y, LUO R, et al. Neighbor sum distinguishing total coloring of graphs with bounded treewidth. Journal of Combinatorial Optimization, 2018, 36, 23- 34.
doi: 10.1007/s10878-018-0271-0
|
11 |
于筱蔚. 图的点可区别染色和标号 [D]. 济南: 山东大学, 2018.
|
12 |
QU C Q, DING L H, WANG G H, et al. Neighbor distinguishing total choice number of sparse graphs via the Combinatorial Nullstellensatz. Acta Mathematica Sinica (English Series), 2016, 32 (2): 537- 548.
doi: 10.1007/s10255-016-0583-8
|
13 |
LU Y, XU C D, MIAO Z K. Neighbor sum distinguishing list total coloring of subcubic graphs. Journal of Combinatorial Optimization, 2018, 35, 778- 793.
doi: 10.1007/s10878-017-0239-5
|
14 |
SUN L, YU G L, LI X. Neighbor sum distinguishing total choosability of 1-planar graphs with maximum degree at least 24. Discrete Mathematics, 2021, 344 (1): 112190.
doi: 10.1016/j.disc.2020.112190
|
15 |
ZHANG D H, LU Y, ZHANG S G. Neighbor sum distinguishing total choice number of planar graphs without 6-cycles. Acta Mathematica Sinica (English Series), 2020, 36 (12): 1417- 1428.
doi: 10.1007/s10114-020-0144-1
|
16 |
ZHANG D H, LU Y, ZHANG S G. Neighbor sum distinguishing total choosability of cubic graphs. Graphs and Combinatorics, 2020, 36, 1417- 1428.
|
17 |
ALON N. Combinatorial Nullstellensatz. Combinatorics Probability & Computing, 1999, (8): 7- 29.
|