1 |
SI J Q, ZHAO G F, SUN W D, et al. Oxidative coupling of methane: Examining the inactivity of the MnOx-Na2WO4/SiO2 catalyst at low temperature . Angewandte Chemie-International Edition, 2022, 61 (18): e202117201.
|
2 |
ARUTYUNOV V S, STREKOVA L N. The interplay of catalytic and gas-phase stages at oxidative conversion of methane: A review. Journal of Molecular Catalysis A: Chemical, 2017, 426, 326- 342.
|
3 |
WANG P W, ZHAO G F, WANG Y, et al. MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst . Science Advances, 2017, 3 (6): e1603180.
|
4 |
ZHAO G F, NI J Y, SI J Q, et al. Low-temperature light-off MnOx-Na2WO4-based catalysts: A step forward to OCM process industrialization . ChemPhysChem, 2022, 23, e202200365.
|
5 |
HAYEK N S, KHLIEF G J, HORANI F, et al. Effect of reaction conditions on the oxidative coupling of methane over doped MnOx-Na2WO4/SiO2 catalyst . Journal of Catalysis, 2019, 376, 25- 31.
|
6 |
ARNDT S, OTREMBA T, SIMON U, et al. Mn-Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? . Applied Catalysis A: General, 2012, 425, 53- 61.
|
7 |
SINEV M, PONOMAREVA E, SINEV I, et al. Oxygen pathways in oxidative coupling of methane and related processes. Case study: NaWMn/SiO2 catalyst . Catalysis Today, 2019, 33, 36- 46.
|
8 |
AYDIN Z, KONDRATENKO V A, LUND H, et al. Revisiting activity- and selectivity-enhancing effects of water in the oxidative coupling of methane over MnOx-Na2WO4/SiO2 and proving for other materials . ACS Catalysis, 2020, 10 (15): 8751- 8764.
|
9 |
申文杰. 低温甲烷氧化偶联制乙烯. 物理化学学报, 2017, 33 (12): 2321- 2322.
|
10 |
PAK S, LUNSFORD J H. Thermal effects during the oxidative coupling of methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO catalysts . Applied Catalysis A: General, 1998, 168, 131- 137.
|
11 |
SARSANI S, WEST D, LIANG W, et al. Autothermal oxidative coupling of methane with ambient feed temperature. Chemical Engineering Journal, 2017, 328, 484- 496.
|
12 |
ZOHOUR B, NOON D, SENKAN S. New insights into the oxidative coupling of methane from spatially resolved concentration and temperature profiles. ChemCatChem, 2013, (5): 2809- 2812.
|
13 |
BALAKOTAIAH V, WEST D H. Thermal effects and bifurcations in gas phase catalytic partial oxidations. Current Opinion in Chemical Engineering, 2014, (5): 68- 77.
|
14 |
SUN W D, ZHAO G F, GAO Y, et al. An oxygen carrier catalyst toward efficient chemical looping-oxidative coupling of methane. Applied Catalysis B: Environmental, 2022, 304, 120948.
|
15 |
PARISHAN S, LITTLEWOOD P, ARINCHTEIN A, et al. Chemical looping as a reactor concept for the oxidative coupling of methane over the MnxOy-Na2WO4/SiO2 catalyst, benefits and limitation . Catalysis Today, 2018, 311, 40- 47.
|
16 |
FLEISCHER V, LITTLEWOOD P, PARISHAN S, et al. Chemical looping as reactor concept for the oxidative coupling of methane over a Na2WO4/Mn/SiO2 catalyst . Chemical Engineering Journal, 2016, 306, 646- 654.
|
17 |
CHENG Z, BASER D S, NADGOUDA S G, et al. C2+ selectivity enhancement in chemical looping oxidative coupling of methane over a Mg-Mn composite oxygen carrier by Li-doping-induced oxygen vacancies . ACS Energy Letters, 2018, (3): 1730- 1736.
|
18 |
BASER D S, CHENG Z, FAN J A, et al. Codoping Mg-Mn based oxygen carrier with lithium and tungsten for enhanced C2 yield in a chemical looping oxidative coupling of methane system . ACS Sustainable Chemistry & Engineering, 2021, (9): 2651- 2660.
|
19 |
FANG X, LI S, LIN J, et al. Preparation and characterization of catalyst for oxidative coupling of methane. Journal of Molecular Catalysis, 1992, (6): 254- 262.
|
20 |
SUN W D, GAO Y, ZHAO G F, et al. Mn2O3-Na2WO4 doping of CexZr1-xO2 enables increased activity and selectivity for low temperature oxidative coupling of methane . Journal of Catalysis, 2021, 400, 372- 386.
|
21 |
陈宏善, 牛建中, 夏春谷, 等. Na-W-Mn/SiO2催化剂中Na-Mn协同作用的分子轨道研究 . 化学学报, 2001, 59 (5): 623- 628.
|
22 |
陈宏善, 牛建中, 夏春谷, 等. 甲烷氧化偶联Na-W-Mn/SiO2催化剂的喇曼光谱 . 物理化学学报, 2000, 16 (6): 543- 546.
|
23 |
ZHANG X, LI H, HOU F, et al. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100 . Applied Surface Science, 2017, 411, 27- 33.
|
24 |
JIANG H, WANG C, WANG H, et al. Synthesis of highly efficient MnOx catalyst for low-temperature NH3-SCR prepared from Mn-MOF-74 template [J]. Materials Letters, 2016, 168: 17-19.
|