1 |
ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al.. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45 (11): 8185- 8189.
|
2 |
ZHOU Z Y, DING D S, JIANG Y K, et al.. Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals. Optics Express, 2014, 22 (17): 20298- 20310.
|
3 |
PADGETT M, BOWMAN R.. Tweezers with twist. Nature Photonics, 2011, 5 (6): 343- 348.
|
4 |
MAIR A, VAZIRI A, WEIHS G, et al.. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412 (6844): 313- 316.
|
5 |
PATERSON C.. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physics Review Letters, 2005, 94 (15): 153901.
|
6 |
BOZINOVIC N, YUE Y, REN Y X, et al.. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340 (6140): 1545- 1548.
|
7 |
HUANG H, MILIONE G, LAVERY M P J, et al.. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre. Scientific Reports, 2015, 5 (1): 14931.
|
8 |
HUANG H, XIE G D, YAN Y, et al.. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics Letters, 2014, 39 (2): 197- 200.
|
9 |
LEACH J, PADGETT M J, BARNETT S M, et al.. Measuring the orbital angular momentum of a single photon. Physics Review Letters, 2002, 88 (25): 257901.
|
10 |
LI P Y, WANG B, SONG X B, et al.. Non-destructive identification of twisted light. Optics Letters, 2016, 41 (7): 1574- 1577.
|
11 |
ZHOU H L, SHI L, ZHANG X L, et al.. Dynamic interferometry measurement of orbital angular momentum of light. Optics Letters, 2014, 39 (20): 6058- 6061.
|
12 |
HICKMANN J M, FONSECA E J S, SOARES W C, et al.. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Physics Review Letters, 2010, 105 (5): 053904.
|
13 |
GHAI D P, SENTHILKUMARAN P, SIROHI R S.. Single-slit diffraction of an optical beam with phase singularity. Optics and Lasers in Engineering, 2009, 47 (1): 123- 126.
|
14 |
RASOULI S, FATHOLLAZADE S, AMIRI P.. Simple, efficient and reliable characterization of Laguerre-Gaussian beams with non-zero radial indices in diffraction from an amplitude parabolic-line linear grating. Optics Express, 2021, 29 (19): 29661- 29675.
|
15 |
DOSTER T, WATNIK A T.. Machine learning approach to OAM beam demultiplexing via convolutional neural networks. Applied Optics, 2017, 56 (12): 3386- 3396.
|
16 |
LOHANI S, GLASSER R T.. Turbulence correction with artificial neural networks. Optics Letters, 2018, 43 (11): 2611- 2614.
|
17 |
LIU Z W, YAN S, LIU H G, et al.. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Physics Review Letters, 2019, 123 (18): 183902.
|
18 |
MAO Z X, YU H Y, XIA M, et al.. Broad bandwidth and highly efficient recognition of optical vortex modes achieved by the neural network approach. Physics Review Applied, 2020, 13 (3): 034063.
|
19 |
ZHANG N, DAVIS J A, MORENO I, et al.. Analysis of fractional vortex beams using a vortex grating spectrum analyzer. Applied Optics, 2010, 49 (13): 2456- 2462.
|
20 |
HUANG H C, LIN Y T, SHIH M F.. Measuring the fractional orbital angular momentum of a vortex light beam by cascaded Mach–Zehnder interferometers. Optics Communications, 2012, 285 (4): 383- 388.
|
21 |
ZHU J, ZHANG P, FU D Z, et al.. Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits. Photonics Research, 2016, 4 (5): 187- 190.
|
22 |
DENG D, LIN M C, Li Y, et al.. Precision measurement of fractional orbital angular momentum. Physical Review Applied, 2019, 12 (1): 014048.
|
23 |
NA Y, KO D K.. Deep-learning-based high-resolution recognition of fractional-spatial-mode-encoded data for free-space optical communications. Scientific Reports, 2021, 11 (1): 2678.
|
24 |
JING G Q, CHEN L Z, WANG P P, et al.. Recognizing fractional orbital angular momentum using feed forward neural network. Results in Physics, 2021, 28, 104619.
|
25 |
NA Y, KO D K.. Adaptive demodulation by deep learning based identification of fractional orbital angular momentum modes with structural distortion due to atmospheric turbulence. Scientific Reports, 2021, 11 (1): 23505.
|
26 |
ZHOU J W, YIN Y L, TANG J H, et al.. Recognition of high-resolution optical vortex modes with deep residual learning. Physical Review A, 2022, 106 (1): 013519.
|
27 |
TIAN Q H, LI Z, HU K, et al.. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator. Optics Express, 2018, 26 (21): 27849- 27864.
|
28 |
CAO M, YIN Y L, ZHOU J W, et al.. Machine learning based accurate recognition of fractional optical vortex modes in atmospheric environment. Applied Physics Letters, 2021, 119 (14): 141103.
|
29 |
GOPAUL C, ANDREW R.. The effect of atmospheric turbulence on entangled orbital angular momentum states. New Journal of Physics, 2007, 9 (4): 94.
|
30 |
ZHAO S M, LEACH J, GONG L Y, et al.. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states. Optics Express, 2012, 20 (1): 452- 461.
|
31 |
ANDREWS L C.. An analytical model for the refractive index power spectrum and its application to optical scintillations in the atmosphere. Journal of Modern Optics, 1992, 39 (9): 1849- 1853.
|
32 |
高春清, 付时尧. 涡旋光束[M]. 北京: 清华大学出版社, 2019: 205.
|
33 |
XIE S N, GIRSHICK R, DOLLAR P, et al. Aggregated Residual Transformations for deep neural networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 1492-1500.
|