1 |
OVER H.. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chemical Reviews, 2012, 112 (6): 3356- 3426.
|
2 |
UCHIDA M, NOMOTO T, MUSASHI M, et al.. Superconductivity in uniquely strained RuO2 films. Physical Review Letters, 2020, 125 (14): 147001.
|
3 |
RUF J P, PAIK H, SCHREIBER N J, et al.. Strain-stabilized superconductivity. Nature Communications, 2021, 12 (1): 59.
|
4 |
RYDEN W D, LAWSON A W.. Magnetic susceptibility of IrO2 and RuO2. The Journal of Chemical Physics, 1970, 52 (12): 6058- 6061.
|
5 |
FENG Z X, ZHOU X R, ŠMEJKAL L, et al.. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nature Electronics, 2022, 5 (11): 735- 743.
|
6 |
BERLIJN T, SNIJDERS P C, DELAIRE O, et al.. Itinerant antiferromagnetism in RuO2. Physical Review Letters, 2017, 118 (7): 077201.
|
7 |
LOVESEY S W, KHALYAVIN D D, VAN DER LAAN G.. Magnetic properties of RuO2 and charge-magnetic interference in Bragg diffraction of circularly polarized x-rays. Physical Review B, 2022, 105 (1): 014403.
|
8 |
GONZÁLEZ-HERNÁNDEZ R, ŠMEJKAL L, VÝBORNÝ K, et al.. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Physical Review Letters, 2021, 126 (12): 127701.
|
9 |
CHI B, JIANG L, ZHU Y, et al.. Crystal facet orientated altermagnets for detecting ferromagnetic and antiferromagnetic states by giant tunneling magnetoresistance effect. Physical Review Applied, 2024, 21 (3): 034038.
|
10 |
SUN Y, ZHANG Y, LIU C X, et al.. Dirac nodal lines and induced spin Hall effect in metallic rutile oxides. Physical Review B, 2017, 95 (23): 235104.
|
11 |
JOVIC V, KOCH R J, PANDA S K, et al.. Dirac nodal lines and flat-band surface state in the functional oxide RuO2. Physical Review B, 2018, 98 (24): 241101.
|
12 |
ZHOU X, FENG W, YANG X, et al.. Crystal chirality magneto-optical effects in collinear antiferromagnets. Physical Review B, 2021, 104 (2): 024401.
|
13 |
LIU J, ZHAN J, LI T, et al.. Absence of altermagnetic spin splitting character in rutile oxide RuO2. Physical Review Letters, 2024, 133 (17): 176401.
|
14 |
ŠMEJKAL L, GONZÁLEZ-HERNÁNDEZ R, JUNGWIRTH T, et al.. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Science Advances, 2020, 6 (23): eaaz8809.
|
15 |
ŠMEJKAL L, HELLENES A B, GONZÁLEZ-HERNÁNDEZ R, et al.. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Physical Review X, 2022, 12 (1): 011028.
|
16 |
BAI H, HAN L, FENG X Y, et al.. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Physical Review Letters, 2022, 128 (19): 197202.
|
17 |
BOSE A, SCHREIBER N J, JAIN R, et al.. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nature Electronics, 2022, 5 (5): 267- 274.
|
18 |
KARUBE S, TANAKA T, SUGAWARA D, et al.. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Physical Review Letters, 2022, 129 (13): 137201.
|
19 |
SHAO D F, ZHANG S H, XIAO R C, et al.. Spin-neutral tunneling anomalous Hall effect. Physical Review B, 2022, 106 (18): L180404.
|
20 |
WADLEY P, HOWELLS B, ŽELEZNÝ J, et al.. Electrical switching of an antiferromagnet. Science, 2016, 351 (6273): 587- 590.
|
21 |
BALTZ V, MANCHON A, TSOI M, et al.. Antiferromagnetic spintronics. Reviews of Modern Physics, 2018, 90 (1): 015005.
|
22 |
MAURYA V, SHARMA G, JOSHI K B.. First-principles characterisation of structural and electronic properties of some RuO2 crystals. Physica Scripta, 2021, 96 (5): 055807.
|
23 |
TANAKA K, NOMOTO T, ARITA R.. First-principles study of the tunnel magnetoresistance effect with Cr-doped RuO2 electrode. Physical Review B, 2024, 110 (6): 064433.
|
24 |
NOHARA Y, ANDERSEN O K.. Interpolation across a muffin-tin interstitial using localized linear combinations of spherical waves. Physical Review B, 2016, 94 (8): 085148.
|
25 |
YAMASAKI A, CHIONCEL L, LICHTENSTEIN A I, et al.. Model Hamiltonian parameters for half-metallic ferromagnets NiMnSb and CrO2. Physical Review B, 2006, 74 (2): 024419.
|
26 |
SAHA-DASGUPTA T, ANDERSEN O K, NUSS J, et al. Electronic structure of V2O3: Wannier orbitals from LDA-NMTO calculations[EB/OL]. (2009-07-16)[2024-09-27]. https://arxiv.org/pdf/0907.2841.
|
27 |
ANDERSEN O K. NMTOs and their Wannier functions [C]// Correlated Electrons: From Model to Materials. Jülich: Forschungszentrum Jülich, 2012: 16-27.
|
28 |
PERDEW J P, BURKE K, ERNZERHOF M.. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77 (18): 3865- 3868.
|
29 |
ANDERSEN O K, EBERT H, KOLLAR J, et al. Electronic structure and physical properties of solids: The uses of the LMTO method[C/OL]. Berlin: Springer, 2000[2024-09-27]. https://link.springer.com/book/10.1007/3-540-46437-9.
|
30 |
ANDERSEN O K.. Linear methods in band theory. Physical Review B, 1975, 12 (8): 3060- 3083.
|
31 |
ANDERSEN O K, JEPSEN O.. Explicit, first-principles tight-binding theory. Physical Review Letters, 1984, 53 (27): 2571- 2574.
|
32 |
MARZARI N, MOSTOFI A A, YATES J R, et al.. Maximally localized Wannier functions: Theory and applications. Reviews of Modern Physics, 2012, 84 (4): 1419- 1475.
|
33 |
KRESSE G, FURTHMÜLLER J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54 (16): 11169- 11186.
|
34 |
MONKHORST H J, PACK J D.. Special points for Brillouin-zone integrations. Physical Review B, 1976, 13 (12): 5188- 5192.
|
35 |
DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al.. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Physical Review B, 1998, 57 (3): 1505- 1509.
|
36 |
ANISIMOV V I, ZAANEN J, ANDERSEN O K.. Band theory and Mott insulators: Hubbard U instead of Stoner I. Physical Review B, 1991, 44 (3): 943- 954.
|
37 |
BAUR W H, KHAN A A.. Rutile-type compounds. IV. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Crystallographica Section B, 1971, 27 (11): 2133- 2139.
|
38 |
WANG V, XU N, LIU J C, et al.. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Computer Physics Communications, 2021, 267, 108033.
|