华东师范大学学报(自然科学版) ›› 2019, Vol. 2019 ›› Issue (5): 36-52.doi: 10.3969/j.issn.1000-5641.2019.05.003

• 数据驱动的计算教育学 • 上一篇    下一篇

面向自动问答的机器阅读理解综述

杨康, 黄定江, 高明   

  1. 华东师范大学 数据科学与工程学院, 上海 200062
  • 收稿日期:2019-07-29 出版日期:2019-09-25 发布日期:2019-10-11
  • 通讯作者: 黄定江,男,研究员,研究方向为机器学习与人工智能及其在计算金融等跨领域中大数据的解析和应用.E-mail:djhuang@dase.ecnu.edu.cn. E-mail:djhuang@dase.ecnu.edu.cn
  • 作者简介:杨康,男,硕士研究生,研究方向为基于机器阅读的自动问答技术.E-mail:kyang1@163.com.
  • 基金资助:
    国家自然科学基金(U1711262,11501204)

A review of machine reading comprehension for automatic QA

YANG Kang, HANG Ding-jiang, GAO Ming   

  1. School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
  • Received:2019-07-29 Online:2019-09-25 Published:2019-10-11

摘要: 人工智能正在深彻地变革各个行业.AI与教育的结合加速推动教育的结构性变革,正在将传统教育转变为智适应教育.基于深度学习的自动问答系统不仅可帮助学生实时解答疑惑、获取知识,还可以快速获取学生行为数据,加速教育的个性化和智能化.机器阅读理解是自动问答系统的核心模块,是理解学生问题,理解文档内容,快速获取知识的重要技术.在过去的几年里,随着深度学习复兴以及大规模机器阅读数据集的公开,各种各样的基于神经网络的机器阅读模型不断涌现.这篇综述主要讲述3方面的内容:介绍机器阅读理解的定义与发展历程;分析神经机器阅读模型之间的优点及不足;总结机器阅读领域的公开数据集以及评价方法.

关键词: 人工智能, 智适应教育, 深度学习, 机器阅读理解

Abstract: Artificial Intelligence (AI) is affecting every industry. Applying AI to education accelerates the structural reform of education and transforms traditional education into intelligent adaptive education. The automatic Question Answer system, based on deep learning, not only helps students to answer questions and acquire knowledge in real-time, but can also quickly gather student behavioral data and accelerate personalization of the educational process. Machine reading comprehension is the core module of an automatic Question Answer system, and it is an important technology to understand student problems, document content, and acquire knowledge quickly. With the revival of deep learning and the availability of large-scale reading comprehension datasets, a number of neural network-based machine reading models have been proposed over the past few years. The purpose of this review is three-fold:to introduce and review progress in machine reading comprehension; to compare and analyze the advantages and disadvantages between various neural machine reading models; and to summarize the relevant datasets and evaluation methods in the field of machine reading.

Key words: Artificial Intelligence, intellectual adaptation education, deep learning, machine reading comprehension

中图分类号: