[1] CHEN D Q. Neural reading comprehension and beyond[D]. CA:Standford University, 2018. [2] LEHNERT W G. The process of question answering[R]. Yale Univ New Haven Conn, 1977. [3] HIRSCHMAN L, LIGHT M, BRECK E, et al. Deep read:A reading comprehension system[C]//Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics. Association for Computational Linguistics, 1999:325-332. [4] RILOFF E, THELEN M. A rule-based question answering system for reading comprehension tests[C]//Proceedings of the 2000 ANLP/NAACL Workshop on Reading comprehension tests as evaluation for computer-based language understanding sytems-Volume 6. Association for Computational Linguistics, 2000:13-19. [5] RICHARDSON M, BURGES C J C, RENSHAW E. Mctest:A challenge dataset for the open-domain machine comprehension of text[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013:193-203. [6] SACHAN M, DUBEY K, XING E, et al. Learning answer-entailing structures for machine comprehension[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1:Long Papers), 2015:239-249. [7] NARASIMHAN K, BARZILAY R. Machine comprehension with discourse relations[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1:Long Papers), 2015:1253-1262. [8] WANG H, BANSAL M, GIMPEL K, et al. Machine comprehension with syntax, frames, and semantics[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2:Short Papers), 2015:700-706. [9] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003(3):1137-1155. [10] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in neural information processing systems, 2013:3111-3119. [11] PENNINGTON J, SOCHER R, MANNING C. Glove:Global vectors for word representation[C]//Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014:1532-1543. [12] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780. [13] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint, arXiv:1412.3555, 2014. [14] RAJPURKAR P, ZHANG J, LOPYREV K, et al. Squad:100,000+questions for machine comprehension of text[J]. arXiv preprint, arXiv:1606.05250, 2016. [15] NGUYEN T, ROSENBERG M, SONG X, et al. MS MARCO:A Human-Generated MAchine Reading COmprehension Dataset[J]. Neural Information Processing Systems, 2016. [16] JOSHI M, CHOI E, WELD D S, et al. Triviaqa:A large scale distantly supervised challenge dataset for reading comprehension[J]. arXiv preprint, arXiv:1705.03551, 2017. [17] TRISCHLER A, WANG T, YUAN X, et al. Newsqa:A machine comprehension dataset[J]. arXiv preprint, arXiv:1611.09830, 2016. [18] KOČSKÝ T, SCHWARZ J, BLUNSOM P, et al. The narrativeqa reading comprehension challenge[J]. Transactions of the Association for Computational Linguistics, 2018(6):317-328. [19] LAI G, XIE Q, LIU H, et al. Race:Large-scale reading comprehension dataset from examinations[J]. arXiv preprint, arXiv:1704.04683, 2017. [20] DUNN M, SAGUN L, HIGGINS M, et al. Searchqa:A new q&a dataset augmented with context from a search engine[J]. arXiv preprint, arXiv:1704.05179, 2017. [21] HE W, LIU K, LIU J, et al. Dureader:a chinese machine reading comprehension dataset from real-world applications[J]. arXiv preprint, arXiv:1711.05073, 2017. [22] TAYLOR W L. "Cloze procedure":A new tool for measuring readability[J]. Journalism Bulletin, 1953, 30(4):415-433. [23] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint, arXiv:1409.0473, 2014. [24] HERMANN K M, KOCISKÝ HERMANN K M, KOCISKY T, et al. Teaching machines to read and comprehend[C]//Advances in neural information processing systems. 2015:1693-1701. [25] CHEN D, BOLTON J, MANNING C D. A thorough examination of the cnn/daily mail reading comprehension task[J]. arXiv preprint, arXiv:1606.02858, 2016. [26] KADLEC R, SCHMID M, BAJGAR O, et al. Text understanding with the attention sum reader network[J]. arXiv preprint, arXiv:1603.01547, 2016. [27] VINYALS O, FORTUNATO M, JAITLY N. Pointer networks[C]//Advances in Neural Information Processing Systems, 2015:2692-2700. [28] CUI Y, LIU T, CHEN Z, et al. Consensus attention-based neural networks for chinese reading comprehension[J]. arXiv preprint, arXiv:1607.02250, 2016. [29] CUI Y, CHEN Z, WEI S, et al. Attention-over-attention neural networks for reading comprehension[J]. arXiv preprint, arXiv:1607.04423, 2016. [30] WANG S, JIANG J. Machine comprehension using match-lstm and answer pointer[J]. arXiv preprint, arXiv:1608.07905, 2016. [31] SEO M, KEMBHAVI A, FARHADI A, et al. Bidirectional attention flow for machine comprehension[J]. arXiv preprint, arXiv:1611.01603, 2016. [32] KIM Y. Convolutional neural networks for sentence classification[J]. arXiv preprint, arXiv:1408.5882, 2014. [33] WANG W, YANG N, WEI F, et al. Gated self-matching networks for reading comprehension and question answering[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers), 2017:189-198. [34] HUANG H Y, ZHU C, SHEN Y, et al. Fusionnet:Fusing via fully-aware attention with application to machine comprehension[J]. arXiv preprint, arXiv:1711.07341, 2017. [35] LIU X, SHEN Y, DUH K, et al. Stochastic answer networks for machine reading comprehension[J]. arXiv preprint, arXiv:1712.03556, 2017. [36] WESTON J, CHOPRA S, BORDES A. Memory networks[J]. arXiv preprint, arXiv:1410.3916, 2014. [37] SUKHBAATAR S, WESTON J, FERGUS R. End-to-end memory networks[C]//Advances in neural information processing systems, 2015:2440-2448. [38] DHINGRA B, LIU H, YANG Z, et al. Gated-attention readers for text comprehension[J]. arXiv preprint, arXiv:1606.01549, 2016. [39] SORDONI A, BACHMAN P, TRISCHLER A, et al. Iterative alternating neural attention for machine reading[J]. arXiv preprint, arXiv:1606.02245, 2016. [40] SHEN Y, HUANG P S, GAO J, et al. Reasonet:Learning to stop reading in machine comprehension[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017:1047-1055. [41] WILLIAMS R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine learning, 1992, 8(3/4):229-256. [42] WU F, LAO N, BLITZER J, et al. Fast reading comprehension with convnets[J]. arXiv preprint, arXiv:1711.04352, 2017. [43] YU A W, DOHAN D, LUONG M T, et al. Qanet:Combining local convolution with global self-attention for reading comprehension[J]. arXiv preprint, arXiv:1804.09541, 2018. [44] DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017:933-941. [45] GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017:1243-1252. [46] CHOLLET F. Xception:Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2017:1251-1258. [47] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in neural information processing systems, 2017:5998-6008. [48] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding with unsupervised learning[R/OL]. Technical report, OpenAI, 2018.[2019.08.01]. https://s3-us-west-2.amazonaws.com/openaiassets/research-covers/language-unsupervised/languageunderstandingpaper.pdf. [49] DEVLIN J, CHANG M W, LEE K, et al. Bert:Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint, arXiv:1810.04805, 2018. [50] HILL F, BORDES A, CHOPRA S, et al. The goldilocks principle:Reading children's books with explicit memory representations[J]. arXiv preprint, arXiv:1511.02301, 2015. |