1 |
任治潞. 从“重客轻货”到“客货并重”——《“十四五”航空物流发展专项规划》解读. 大飞机, 2022, (2): 56- 60.
|
2 |
邹建军. 新发展格局下我国航空物流建设发展策略思考. 民航管理, 2020, (12): 16- 22.
|
3 |
李小龙, 徐启明. 大运行理念下飞机维修成本精益管理. 民航管理, 2021, (10): 58- 63.
|
4 |
周俊. 数据驱动的航空发动机剩余使用寿命预测方法研究 [D]. 南京: 南京航空航天大学, 2017.
|
5 |
蔡光耀, 高晶, 苗学问. 航空发动机健康管理系统发展现状及其指标体系研究. 测控技术, 2016, 35 (4): 1-5.
|
6 |
PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws. Journal of Basic Engineering, 1963, 85 (4): 528- 533.
|
7 |
ZHAO F, TIAN Z, ZENG Y. Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method. IEEE Transactions on Reliability, 2013, 62 (1): 146- 159.
|
8 |
LEI Y, LI N, GONTARZ S, et al. A model-based method for remaining useful life prediction of machinery. IEEE Transactions on Reliability, 2016, 65 (3): 1314- 1326.
|
9 |
SUN J, ZUO H, WANG W, et al. Prognostics uncertainty reduction by fusing on-line monitoring data based on a state-space-based degradation model. Mechanical Systems and Signal Processing, 2014, 45 (2): 396- 407.
|
10 |
HUANG Z, XU Z, WANG W, et al. Remaining useful life prediction for a nonlinear heterogeneous wiener process model with an adaptive drift. IEEE Transactions on Reliability, 2015, 64 (2): 687- 700.
|
11 |
朱磊, 左洪福, 蔡景. 基于Wiener过程的民用航空发动机性能可靠性预测. 航空动力学报, 2013, 28, (5): 1006-1012.
|
12 |
WANG H K, HUANG H Z, LI Y F, et al. Condition-based maintenance with scheduling threshold and maintenance threshold. IEEE Transactions on Reliability, 2016, 65 (2): 513- 524.
|
13 |
PENG W, LI Y F, YANG Y J, et al. Bivariate analysis of incomplete degradation observations based on inverse gaussian processes and copulas. IEEE Transactions on Reliability, 2016, 65 (2): 624- 639.
|
14 |
GARCÍA NIETO P J, GARCÍA-GONZALO E, SÁNCHEZ LASHERAS F, et al. Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability. Reliability Engineering and System Safety, 2015, 138, 219- 231.
|
15 |
KHELIF R, CHEBEL-MORELLO B, MALINOWSKI S, et al. Direct remaining useful life estimation based on support vector regression. IEEE Transactions on Industrial Electronics, 2017, 64 (3): 2276- 2285.
|
16 |
ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation [C]// 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). IEEE, 2017: 88-95. DOI: 10.1109/ICPHM.2017.7998311.
|
17 |
REN L, CHENG X J, WANG X K, et al. Multi-scale dense gate recurrent unit networks for bearing remaining useful life prediction. Future Generation Computer Systems, 2019, 94, 601- 609.
|
18 |
WANG J J, WEN G L, YANG S P, et al. Remaining useful life estimation in prognostics using deep bidirectional LSTM neural network [C]// 2018 Prognostics and System Health Management Conference (PHM-Chongqing). IEEE, 2018: 1037-1042. DOI: 10.1109/PHM-Chongqing.2018.00184.
|
19 |
HU K, CHENG Y W, WU J, et al. Deep bidirectional recurrent neural networks ensemble for remaining useful life prediction of aircraft engine [J]. IEEE Transactions on Cybernetics. IEEE, 2021. DOI: 10.1109/TCYB.2021.3124838.
|
20 |
LI H, LI Y, WANG Z J, et al. Remaining useful life prediction of aero-engine based on PCA-LSTM [C]// 2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO). IEEE, 2021: 63-66.
|
21 |
LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliability Engineering and System Safety, 2018, 172, 1- 11.
|
22 |
LI R Z, CHU Z T, JIN W K, et al. Temporal convolutional network based regression approach for estimation of remaining useful life [C]// 2021 IEEE International Conference on Prognostics and Health Management (ICPHM). IEEE, 2021. DOI: 10.1109/ICPHM51084.2021.9486528.
|
23 |
ZENG F C, LI Y M, JIANG Y H, et al. A deep attention residual neural network-based remaining useful life prediction of machinery. Measurement, 2021, 181, 109642.
|
24 |
ABDERREZEK S, BOUROUIS A. Convolutional autoencoder and bidirectional long short-term memory to estimate remaining useful life for condition based maintenance [C]// 2021 International Conference on Networking and Advanced Systems (ICNAS). IEEE, 2021. DOI: 10.1109/ICNAS53565.2021.9628958.
|
25 |
REMADNA I, TERRISSA S L, ZEMOURI R, et al. Leveraging the power of the combination of CNN and bi-directional LSTM networks for aircraft engine RUL estimation [C]// 2020 Prognostics and Health Management Conference (PHM-Besançon). IEEE, 2020: 116-121. DOI: 10.1109/PHM-Besancon49106.2020.00025.
|
26 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2017: 6000-6010.
|
27 |
MO Y, WU Q, LI X, et al. Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit. Journal of Intelligent Manufacturing, 2021, 32 (7): 1997- 2006.
|
28 |
ZHANG Z Z, SONG W, LI Q Q. Dual-aspect self-attention based on transformer for remaining useful life prediction [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2505711. DOI: 10.1109/TIM.2022.3160561.
|
29 |
LIU L, WANG S, LIU D, et al. Entropy-based sensor selection for condition monitoring and prognostics of aircraft engine. Microelectronics Reliability, 2015, 55 (9/10): 2092- 2096.
|
30 |
SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation [C]// 2008 International Conference on Prognostics and Health Management. IEEE, 2008. DOI: 10.1109/PHM.2008.4711414.
|
31 |
ZHAO Z Q, LIANG B, WANG X Q, et al. Remaining useful life prediction of aircraft engine based on degradation pattern learning. Reliability Engineering and System Safety, 2017, 164, 74- 83.
|