1 |
FANG Z, SMITH R L, QI X H. Production of Platform Chemicals from Sustainable Resources [M]. Singapore: Springer, 2017.
|
2 |
WU X C, WEI W, JIANG J W, et al. High-flux high-selectivity metal-organic framework MIL-160 membrane for xylene isomer separation by pervaporation. Angewandte Chemie-International Edition, 2018, 57 (47): 15354- 15358.
|
3 |
BURGESS S K, LEISEN J E, KRAFTSCHIK B E, et al. Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules, 2014, 47 (4): 1383- 1391.
|
4 |
BURGESS S K, KRIEGEL R M, KOROS W J. Carbon dioxide sorption and transport in amorphous poly(ethylene furanoate). Macromolecules, 2015, 48 (7): 2184- 2193.
|
5 |
JIANG M, LIU Q, ZHANG Q, et al. A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50 (5): 1026- 1036.
|
6 |
LEWKOWSKI J. Convenient synthesis of furan-2,5-dicarboxylic acid and its derivatives [J]. Polish Journal of Chemistry, 2001, 75: 1943-1946.
|
7 |
TAGUCHI Y, OISHI A, IIDA H. One-step synthesis of dibutyl furandicarboxylates from galactaric acid. Chemistry Letters, 2008, 37 (1): 50- 51.
|
8 |
ZHANG D H, DUMONT M J. Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55 (9): 1478- 1492.
|
9 |
ZHAO D, DELBECQ F, LEN C. One-pot FDCA diester synthesis from mucic acid and their solvent-free regioselective polytran-sesterification for production of glycerol-based furanic polyesters [J]. Molecules, 2019, 24: 1030.
|
10 |
李伟杰, 陆豫. 合成3,4-二取代呋喃-2,5-二甲酸的简便方法. 化学试剂, 2006, (5): 309- 310.
|
11 |
陈天明, 林鹿. 高锰酸钾法制备2,5-呋喃二甲酸. 化学试剂, 2011, 33 (1): 11- 12.
|
12 |
常萌, 黄关葆, 徐曼嘉. 生物基2,5-呋喃二甲酸的制备. 塑料, 2014, 43 (1): 75- 77.
|
13 |
MIURA T, KAKINUMA H, KAWANO T, et al. Preparation of furan-2,5-dicarboxylic acid by oxidizing furan ring compounds: 20070232815 [P]. 2007-10-14.
|
14 |
宋开贺, 苏坤梅, 李振环. 5-羟甲基糠醛催化合成2,5-呋喃二甲酸的研究. 现代化工, 2019, 39 (9): 135- 140.
|
15 |
LI S, SU K M, LI Z H, et al. Selective oxidation of 5-hydroxymethylfurfural with H2O2 catalyzed by a molybdenum complex . Green Chemistry, 2016, 18 (7): 2122- 2128.
|
16 |
CHEN C T, NGUYEN C V, WANG Z Y, et al. Hydrogen peroxide assisted selective oxidation of 5-hydroxymethylfurfural in water under mild conditions. ChemCatChem, 2018, 10 (2): 361- 365.
|
17 |
HANSEN T S, SÁDABA I, GARCÍA-SUÁREZ E J, et al. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions. Applied Catalysis A: General, 2013, 456, 44- 50.
|
18 |
GAWADE A B, NAKHATE A V, YADAV G D. Selective synthesis of 2,5-furandicarboxylic acid by oxidation of 5-hydroxy-methylfurfural over MnFe2O4 catalyst[J]. Catal Today, 2018, 309: 119-125.
|
19 |
CHEN C, WANG L, ZHU B, et al. 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: Catalysts, processes and reaction mechanism. Journal of Energy Chemistry, 2021, 54, 528- 554.
|
20 |
ZHANG Z, DENG K. Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives. ACS Catalysis, 2015, 5 (11): 6529- 6544.
|
21 |
DAVIS S E, HOUK L R, TAMARGO E C, et al. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catalysis Today, 2011, 160 (1): 55- 60.
|
22 |
SIYO B, SCHNEIDER M, RADNIK J, et al. Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials. Applied Catalysis A: General, 2014, 478, 107- 116.
|
23 |
WANG Y, YU K, LEI D, et al. Basicity-tuned hydrotalcite-supported Pd catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural under mild conditions. ACS Sustainable Chemistry & Engineering, 2016, 4 (9): 4752- 4761.
|
24 |
FERRAZ C P, ZIELIŃSKI M, PIETROWSKI M, et al. Influence of support basic sites in green oxidation of biobased substrates using Au-promoted catalysts. ACS Sustainable Chemistry & Engineering, 2018, 6 (12): 16332- 16340.
|
25 |
GAO T, CHEN J, FANG W, et al. Ru/MnXCe1OY catalysts with enhanced oxygen mobility and strong metal-support interaction: Exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation . Journal of Catalysis, 2018, 368, 53- 68.
|
26 |
XIE J, NIE J, LIU H. Aqueous-phase selective aerobic oxidation of 5-hydroxymethylfurfural on Ru/C in the presence of base. Chinese Journal of Catalysis, 2014, 35 (6): 937- 944.
|
27 |
SILVA E D D, GONZALEZ W A, FRAGA M A. Aqueous-phase oxidation of 5-hydroxymethylfurfural over Pt/ZrO2 catalysts: Exploiting the alkalinity of the reaction medium and catalyst basicity . Green Processing and Synthesis, 2016, 5 (4): 353- 364.
|
28 |
LIU Y, MA H Y, LEI D, et al. Active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals. ACS Catalysis, 2019, 9 (9): 8306- 8315.
|
29 |
KE C, LI M, FAN G, et al. Pt nanoparticles supported on nitrogen-doped-carbon-decorated CeO2 for base-free aerobic oxidation of 5-hydroxymethylfurfural . Chemistry-An Asian Journal, 2018, 13 (18): 2714- 2722.
|
30 |
ZHOU C, DENG W, WAN X, et al. Functionalized carbon nanotubes for biomass conversion: The base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst. ChemCatChem, 2015, 7 (18): 2853- 2863.
|
31 |
HAN X, LI C, GUO Y, et al. N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Applied Catalysis A: General, 2016, 526, 1- 8.
|
32 |
DAVIS S E, ZOPE B N, DAVIS R J. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chemistry, 2012, 14 (1): 143- 147.
|
33 |
GORBANEV Y Y, KEGNS S, RIISAGER A. Selective aerobic oxidation of 5-hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium-based supports. Catalysis Letters, 2011, 141 (12): 1752- 1760.
|
34 |
CASANOVA O, IBORRA S, CORMA A. Biomass into chemicals: Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem, 2009, 2 (12): 1138- 1144.
|
35 |
MIAO Z, ZHANG Y, PAN X, et al. Superior catalytic performance of Ce1−xBixO2−δ solid solution and Au/Ce1−xBixO2−δ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution . Catalysis Science & Technology, 2015, 5 (2): 1314- 1322.
|
36 |
LI Q, WANG H, TIAN Z, et al. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au/CeO2 catalysts: the morphology effect of CeO2. Catalysis Science & Technology, 2019, 9 (7): 1570- 1580.
|
37 |
CHENG X, LI S, LIU S, et al. Highly efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using bimetallic Pt-Cu alloy nanoparticles as catalysts. Chemical Communications, 2022, 58 (8): 1183- 1186.
|
38 |
HAYASHI E, YAMAGUCHI Y, KAMATA K, et al. Effect of MnO2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid . Journal of the American Chemical Society, 2019, 141 (2): 890- 900.
|
39 |
LIU X, LUO Y, MA H, et al. Hydrogen-binding-initiated activation of o−h bonds on a nitrogen-doped surface for the catalytic oxidation of biomass hydroxyl compounds. Angewandte Chemie-International Edition, 2021, 60 (33): 18103- 18110.
|
40 |
YOU B, LIU X, JIANG N, et al. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. Journal of the American Chemical Society, 2016, 138 (41): 13639- 13646.
|
41 |
BARWE S, WEIDNER J, CYCHY S, et al. Electrocatalytic oxidation of 5-(hydroxymethyl)furfural using high-surface-area nickel boride. Angewandte Chemie-International Edition, 2018, 57 (35): 11460- 11464.
|
42 |
ZHANG N N, ZOU Y Q, TAO L, et al. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angewandte Chemie-International Edition, 2019, 58 (44): 15895- 15903.
|
43 |
ZHANG P, SHENG X, CHEN X, et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angewandte Chemie-International Edition, 2019, 58 (27): 9155- 9159.
|
44 |
CHA H G, CHOI K S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nature Chemistry, 2015, 7 (4): 328- 333.
|
45 |
BANERJEE A, DICK G R, YOSHINO T, et al. Carbon dioxide utilization via carbonate-promoted C-H carboxylation . Nature, 2016, 531 (7593): 215- 219.
|
46 |
RAECKE B. Synthesis of di- and tricarboxylic acids of aromatic ring systems through shifting of carboxyl groups. Angewandte Chemie, 1958, 70, 1- 5.
|
47 |
PAN T, DENG J, XU Q, et al. Catalytic conversion of furfural into a 2,5-furandicarboxylic acid-based polyester with total carbon utilization. ChemSusChem, 2013, 6 (1): 47- 50.
|
48 |
SHEN G F, ZHANG S C, LEI Y, et al. Synthesis of 2,5-furandicarboxylic acid by catalytic carbonylation of renewable furfural derived 5-bromofuroic acid. Molecular Catalysis, 2018, 455, 204- 209.
|
49 |
刘浪, 杨顺利, 李鸿波, 等. 2,5-呋喃二甲酸的合成. 精细化工, 2011, 28 (4): 410- 412.
|
50 |
李伟杰. 氯化亚铁催化合成呋喃-2,5-二甲酸及其二甲酯. 化学试剂, 2013, 35 (8): 767- 768.
|
51 |
WANG J G, LIU X Q, ZHU J. From furan to high quality bio-based poly(ethylene furandicarboxylate). Chinese Journal of Polymer Science, 2018, 36 (6): 720- 727.
|
52 |
赵峰鸣, 李姗姗, 朱英红, 等. 活性氧化镍电极电催化合成二甘醇酸. 化工学报, 2008, 59 (S1): 88- 92.
|
53 |
DE DIEGO C M, DAM M A, GRUTER G J M. Methods for production of 2,5-furandicarboxylic acid and dialkyl 2,5-furandicarboxylates: WO2011043661 [P]. 2011-04-14.
|
54 |
赵晨, 李愽龙, 赵磊. 一种2, 5-呋喃二甲酸的合成方法: 111187238 [P]. 2020-05-22.
|
55 |
赵晨, 赵磊, 李愽龙. 一种从糠醛生产呋喃二甲酸及其衍生物的方法: 111153876 [P]. 2020-05-15.
|