1 |
VARDANYAN L G, INGOLE B S. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environment International, 2006, 32 (2): 208- 218.
|
2 |
ROMERO-HERNANDEZ J A, AMAYA-CHAVEZ A, BALDERAS-HERNANDEZ P, et al. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes. International Journal of Phytoremediation, 2017, 19 (3): 239- 245.
|
3 |
MEJARE M, BULOW L. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology, 2001, 19 (2): 67- 73.
|
4 |
LONE M I, STOFFELLA P J. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. Journal of Zhejiang University (Science B: An International Biomedicine & Biotechnology Journal), 2008, 9 (3): 210- 220.
|
5 |
徐德福, 李映雪, 李久海, 等. 几种挺水植物对重金属锌的抗性能力及其影响因素. 生态环境学报, 2009, 18 (2): 476- 479.
|
6 |
陈天, 包宁颖, 杜崇宣, 等. 重金属污染河流生态修复区挺水植物对重金属的吸收特性. 环境科学研究, 2020, 33 (9): 2110- 2117.
|
7 |
JING L, YU H, LUAN Y. Meta-analysis of the copper, zinc, and cadmium absorption capacities of aquatic plants in heavy metal-polluted water. International Journal of Environmental Research and Public Health, 2015, 12 (12): 14958- 14973.
|
8 |
MATACHE M L, MARIN C, ROZYLOWICZ L, et al. Plants accumulating heavy metals in the Danube River wetlands. Journal of Environmental Health Science and Engineering, 2013, 11 (1): 1- 7.
|
9 |
SHELAKE R M, WAGHUNDE R R, MORITA E H, et al. Plant-microbe-metal interactions: basics, recent advances, and future trends [J]. Plant Microbiome: Stress Response, 2018, 5(13): 283-306.
|
10 |
李文学, 陈同斌. 超富集植物吸收富集重金属的生理和分子生物学机制. 应用生态学报, 2003, 14 (4): 627- 631.
|
11 |
PERALTA-VIDEA J R, GARDEA-TORRESDEY J L, GOMEZ E, et al. Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environmental Pollution, 2002, 119 (3): 291- 301.
|
12 |
王谦, 成水平. 大型水生植物修复重金属污染水体研究进展. 环境科学与技术, 2010, 33 (5): 102- 108.
|
13 |
LEE Y C, CHANG S P. The biosorption of heavy metals from aqueous solution by Spirogyraand and Cladophora filamentous macroalgae . Bioresource Technology, 2011, 102 (9): 5297- 5304.
|
14 |
黄燚. 挺水植物生态浮床对高浓度地表水中 Cu2+ 的去除与富集模拟研究 [D]. 重庆: 重庆大学, 2016.
|
15 |
周小平, 王建国, 薛利红, 等. 浮床植物系统对富营养化水体中氮、磷净化特征的初步研究. 应用生态学报, 2005, 16 (11): 2199- 2203.
|
16 |
HABERL R. Constructed wetlands: A chance to solve wastewater problems in developing countries. Water Science and Technology, 1999, 40 (3): 1447- 1453.
|
17 |
董小霞, 颜昌宙, 王灶生, 等. 组合式水生植物净化系统对 Cu、Pb 和 Cd 的去除与生物富集特征. 环境工程学报, 2014, 8 (4): 195- 201.
|
18 |
BILLORE S K, PRASHANT, SHARMA J K. Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra. Water Science and Technology, 2009, 60 (11): 2851- 2859.
|
19 |
赵丰, 张勇, 黄民生, 等. 水生植物浮床对城市污染水体的净化效果研究. 华东师范大学学报(自然科学版), 2011, (6): 57- 64.
|
20 |
WU Q, HU Y, LI S Q, et al. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement. Bioresource Technology, 2016, 7 (211): 451- 456.
|
21 |
史鸿乐, 付永胜, 陈智, 等. 微曝气强化生态浮床去除水中 Cu2+效果研究 . 环境工程, 2017, 35 (9): 40- 43.
|
22 |
王颖, 唐艳葵, THONGSALAK S, 等. 水生植物腐解过程对水中重金属迁移转化影响的研究进展. 环境污染与防治, 2017, 39 (7): 794- 797.
|
23 |
刘明坤, 童俊, 胡波, 等. 金泽水库上游来水及库区水质变化时空分布特征. 环境科学, 2019, 40 (10): 4461- 4468.
|
24 |
佟宏伟. 金泽水库生态建设的研究与实践. 净水技术, 2018, 37 (S1): 8- 13.
|
25 |
上海市统计局. 2017年青浦区统计年鉴 [M]. 北京: 中国统计出版社, 2017.
|
26 |
唐玥, 童春富, 刘毛亚, 等. 上海金泽水库典型挺水植物碳、氮、磷化学计量特征的季节变化. 生态学报, 2020, 40 (13): 4528- 4537.
|
27 |
童俊. 金泽水库及其上游来水水质特征及变化规律. 净水技术, 2020, 39 (1): 58- 68.
|
28 |
王敏, 唐景春, 王斐. 常见水生植物对富营养化和重金属复合污染水体的修复效果研究. 水资源与水工程学报, 2013, 24 (2): 50- 56.
|
29 |
蒋跃, 童琰, 由文辉, 等. 3 种浮床植物生长特性及氮、磷吸收的优化配置研究. 中国环境科学, 2011, 31 (5): 774- 780.
|
30 |
温奋翔, 王兵, 肖波, 等. 北方景观水体中生态浮床的植物筛选与水质净化效果. 环境工程学报, 2015, 9 (12): 5881- 5886.
|
31 |
汤迪娟. 基于生态浮岛技术对衡阳西湖公园水体修复的试验研究 [D]. 北京: 中国林业科学研究院, 2015.
|
32 |
李丽, 杨扬, 杨凤娟, 等. 污染水体条件下生态浮床的植物生长特性与作用. 安全与环境学报, 2011, 11 (3): 14- 19.
|
33 |
CHANEY R L, MINNIE B M, LI Y M, et al. Phytoremediation of soil metals[J]. Current Opinion in Biotechnology, 1997, 8(3): 279-284.
|
34 |
ZHAO F L, SHU X, YANG X E, et al. Purifying eutrophic river waters with integrated floating island systems. Ecological Engineering, 2012, 40 (3): 53- 60.
|
35 |
张丽玲, 于瑞莲, 胡恭任, 等. 泉州湾红树植物中重金属元素的分布与储量. 环境科学与技术, 2013, 36 (6): 183- 190.
|
36 |
胡释尹, 李非里, 方小满. 溶解性有机质对自然水体中重金属生物有效性评价的影响. 环境科学与技术, 2016, 39 (1): 27- 31.
|
37 |
唐文忠, 孙柳, 单保庆. 土壤/沉积物中重金属生物有效性和生物可利用性的研究进展. 环境工程学报, 2019, 13 (8): 1775- 1790.
|
38 |
刘登彪, 郑骏宇, 赵涛, 等. 不同供磷水平对四种超富集植物生长及吸收重金属的影响. 环境科学学报, 2015, 35 (4): 1198- 1204.
|
39 |
廖晓勇, 陈同斌, 阎秀兰, 等. 提高植物修复效率的技术途径与强化措施. 环境科学学报, 2007, 27 (6): 881- 893.
|
40 |
THANGARADJOU T, NOBI E P, DILIPAN E, et al. Heavy metal enrichment in seagrasses of Andaman Islands and its implication to the health of the coastal ecosystem. Indian Journal of Geo-Marine Sciences, 2010, 39 (1): 85- 91.
|
41 |
张慧, 王超, 王沛芳, 等. P·Cd·Zn交互作用对沉水植物吸收积累P·Cd·Zn的影响. 安徽农业科学, 2011, 39 (5): 2855- 2858.
|
42 |
乔云蕾, 李铭红, 谢佩君, 等. 沉水植物对受重金属镉、锌污染的水体底泥的修复效果. 浙江大学学报(理学版), 2016, 43 (5): 601- 609.
|
43 |
WELCH R M, HART J J, NORVELL W A, et al. Effects of nutrient solution zinc activity on net uptake, translocation, and root export of cadmium and zinc by separated sections of intact durum wheat (Triticum turgidum L. var. durum) seedling roots . Plant and Soil, 1999, 208 (2): 243- 250.
|
44 |
王丽香, 陈虎, 郭峰, 等. 镉胁迫对花生生长和矿质元素吸收的影响. 农业环境科学学报, 2013, 32 (6): 1106- 1110.
|
45 |
傅桂平, 衣纯真, 张福锁, 等. 潮土中锌对油菜吸收镉的影响. 中国农业大学学报, 1996, 1 (5): 85- 88.
|
46 |
WANG W X, DEI R C H. Effects of major nutrient additions on metal uptake in phytoplankton. Environmental Pollution, 2001, 111 (2): 233- 240.
|
47 |
HUANG H G, WANG K, ZHU Z Q, et al. Moderate phosphorus application enhances Zn mobility and uptake in hyperaccumulator Sedum alfredii . Environmental Science and Pollution Research, 2013, 20 (5): 2844- 2853.
|