| 1 | ARMENI I, SENER O, ZAMIR A R, et al. 3D semantic parsing of large-scale indoor spaces [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1534-1543. | 
																													
																						| 2 | DAI A, CHANG A X, SAVVA M, et al. ScanNet: Richly-annotated 3D reconstructions of indoor scenes [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 5828-5839. | 
																													
																						| 3 | BEHLEY J, GARBADE M, MILIOTO A, et al. SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 9297-9307. | 
																													
																						| 4 | 李勇, 佟国峰, 杨景超, 等.. 三维点云场景数据获取及其场景理解关键技术综述. 激光与光电子学进展, 2019, 56 (4): 21- 34. | 
																													
																						| 5 | LI M, XIE Y, SHEN Y, et al. HybridCR: Weakly-supervised 3D point cloud semantic segmentation via hybrid contrastive regularization [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 14930-14939. | 
																													
																						| 6 | XU X, LEE G H. Weakly supervised semantic point cloud segmentation: Towards 10 × fewer labels [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 13706-13715. | 
																													
																						| 7 | ZHANG Y, QU Y, XIE Y, et al. Perturbed self-distillation: Weakly supervised large-scale point cloud semantic segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 15520-15528. | 
																													
																						| 8 | CHENG M, HUI L, XIE J, et al. SSPC-Net: Semi-supervised semantic 3D point cloud segmentation network [C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2021: 1140-1147. | 
																													
																						| 9 | LIU Z, QI X, FU C W. One thing one click: A self-training approach for weakly supervised 3D semantic segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 1726-1736. | 
																													
																						| 10 | ZHANG Y, LI Z, XIE Y, et al. Weakly supervised semantic segmentation for large-scale point cloud [C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2021: 3421-3429. | 
																													
																						| 11 | HOU J, GRAHAM B, NIEßNER M, et al. Exploring data-efficient 3D scene understanding with contrastive scene contexts [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 15587-15597. | 
																													
																						| 12 | XIE S, GU J, GUO D, et al. PointContrast: Unsupervised pre-training for 3D point cloud understanding [C]// Computer Vision–ECCV 2020: 16th European Conference. 2020: 574-591. | 
																													
																						| 13 | HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3D.net: A new large-scale point cloud classification benchmark [EB/OL]. (2017-04-12)[2023-01-12]. https://arxiv.org/pdf/1704.03847.pdf. | 
																													
																						| 14 | 张佳颖, 赵晓丽, 陈正.. 基于深度学习的点云语义分割综述. 激光与光电子学进展, 2020, 57 (4): 28- 46. | 
																													
																						| 15 | GUO Y, WANG H, HU Q, et al.. Deep learning for 3D point clouds: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43 (12): 4338- 4364. | 
																													
																						| 16 | AUDEBERT N, LE SAUX B, LEFÈVRE S. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks [C]// Computer Vision–ACCV 2016: 13th Asian Conference on Computer Vision. 2017: 180-196. | 
																													
																						| 17 | TCHAPMI L, CHOY C, ARMENI I, et al. SEGCloud: Semantic segmentation of 3D point clouds [C]// 2017 International Conference on 3D Vision. 2017: 537-547. | 
																													
																						| 18 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 3431-3440. | 
																													
																						| 19 | RETHAGE D, WALD J, STURM J, et al. Fully-convolutional point networks for large-scale point clouds [C]// Proceedings of the European Conference on Computer Vision. 2018: 596-611. | 
																													
																						| 20 | QI C R, SU H, MO K, et al. PointNet: Deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 652-660. | 
																													
																						| 21 | QI C R, YI L, SU H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 5105-5114. | 
																													
																						| 22 | JIANG M Y, WU Y R, ZHAO T Q, et al. PointSIFT: A sift-like network module for 3D point cloud semantic segmentation [EB/OL]. (2018-11-24)[2023-01-10]. https://arxiv.org/pdf/1807.00652.pdf. | 
																													
																						| 23 | HU Q, YANG B, XIE L, et al. RandLA-Net: Efficient semantic segmentation of large-scale point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11108-11117. | 
																													
																						| 24 | YANG J, ZHANG Q, NI B, et al. Modeling point clouds with self-attention and gumbel subset sampling [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 3323-3332. | 
																													
																						| 25 | THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: Flexible and deformable convolution for point clouds [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 6411-6420. | 
																													
																						| 26 | LI Y, BU R, SUN M, et al. PointCNN: Convolution on $ \chi $-transformed points [EB/OL]. (2018-11-05)[2023-01-09]. https://arxiv.org/pdf/1801.07791.pdf. | 
																													
																						| 27 | WU B, WAN A, YUE X, et al. SqueezeSeg: Convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud [C]// 2018 IEEE International Conference on Robotics and Automation. 2018: 1887-1893. | 
																													
																						| 28 | WU B, ZHOU X, ZHAO S, et al. SqueezeSegV2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud [C]// 2019 International Conference on Robotics and Automation. 2019: 4376-4382. | 
																													
																						| 29 | MENG H Y, GAO L, LAI Y K, et al. VV-Net: Voxel VAE net with group convolutions for point cloud segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 8500-8508. | 
																													
																						| 30 | WEI J, LIN G, YAP K H, et al. Multi-path region mining for weakly supervised 3D semantic segmentation on point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 4384-4393. | 
																													
																						| 31 | WANG H Y, RONG X J, YANG L , et al. Towards Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point Clouds of Wild Scenes [C]// 30th British Machine Vision Conference 2019 , BMVC. 2019: 284. | 
																													
																						| 32 | JIANG L, SHI S, TIAN Z, et al. Guided point contrastive learning for semi-supervised point cloud semantic segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 6423-6432. | 
																													
																						| 33 | WANG X, GAO J, LONG M, et al. Self-tuning for data-efficient deep learning [C]// Proceedings of the International Conference on Machine Learning. 2021: 10738-10748. | 
																													
																						| 34 | LEI H, AKHTAR N, MIAN A.. Spherical kernel for efficient graph convolution on 3D point clouds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43 (10): 3664- 3680. | 
																													
																						| 35 | WU W, QI Z, LI F X. PointConv: Deep convolutional networks on 3D point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 9621-9630. | 
																													
																						| 36 | REN Z, MISRA I, SCHWING A G, et al. 3D spatial recognition without spatially labeled 3D [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 13204-13213. |