华东师范大学学报(自然科学版) ›› 2024, Vol. 2024 ›› Issue (2): 97-107.doi: 10.3969/j.issn.1000-5641.2024.02.011

• 计算机科学 • 上一篇    下一篇

基于双层局部能量因子的红外小目标检测方法

唐凌霄, 黄昶*()   

  1. 1. 华东师范大学 通信与电子工程学院, 上海 200241
  • 收稿日期:2023-01-30 出版日期:2024-03-25 发布日期:2024-03-18
  • 通讯作者: 黄昶 E-mail:chuang@ee.ecnu.edu.cn

Infrared small-target detection method based on double-layer local energy factor

Lingxiao TANG, Chang HUANG*()   

  1. 1. School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
  • Received:2023-01-30 Online:2024-03-25 Published:2024-03-18
  • Contact: Chang HUANG E-mail:chuang@ee.ecnu.edu.cn

摘要:

红外小目标的检测一直是红外追踪系统的关键技术, 针对现有红外小目标检测方法在复杂背景下易造成虚警、检测速度慢的不足, 从人类视觉系统的角度出发, 参考了多尺度局部能量因子检测方法 (multiscale local contrast measure using a local energy factor, MLCM-LEF), 提出了一种基于双层局部能量因子的红外小目标检测方法. 从局部能量差异与局部亮度差异两个角度进行目标检测, 使用双层局部能量因子从能量角度描述小目标与背景的相异程度, 同时采取加权亮度差因子从亮度角度对图像进行目标检测, 通过二维高斯融合上述二者的处理结果, 最终利用图像均值和标准差进行自适应阈值分割, 提取红外小目标. 经过公开数据集实验测试, 该方法在抑制背景噪声、减低虚警概率的表现上比主流的检测方法有所提升, 与MLCM-LEF算法相比, 基于双层局部能量因子的方法将单帧检测时间降低至三分之一.

关键词: 红外小目标检测, 局部能量因子, 加权亮度差因子, 人类视觉系统

Abstract:

Infrared small-target detection has always been an important technology in infrared tracking systems. The current infrared approaches for small-target detection in complex backgrounds are prone to generating false alarms and exhibit sluggish detection speeds from the perspective of the human visual system. Using the multiscale local contrast measure using a local energy factor (MLCM-LEF) method, an infrared small-target detection method based on a double-layer local energy factor is proposed. The target detection was performed from the perspectives of the local energy difference and local brightness difference. The double-layer local energy factor was used to describe the difference between the small target and the background from the energy perspective, and the weighted luminance difference factor was used to detect the target from the brightness angle. The infrared small target was extracted by a two-dimensional Gaussian fusion of the processing results of the two approaches. Finally, the image mean and standard deviation were used for adaptive threshold segmentation to extract the small infrared target. In experimental tests on public datasets, this method improved the performance in suppressing background compared with the MLCM-LEF algorithm, DLEF (double-layer local energy factor) reduced the detection of a single frame time by one-third.

Key words: infrared small-target detection, local energy factor, weighted brightness difference factor, human visual system

中图分类号: