华东师范大学学报(自然科学版) ›› 2024, Vol. 2024 ›› Issue (6): 62-73.doi: 10.3969/j.issn.1000-5641.2024.06.006
收稿日期:
2024-07-30
接受日期:
2024-09-05
出版日期:
2024-11-25
发布日期:
2024-11-29
通讯作者:
邬言,刘敏
E-mail:ywu@geo.ecnu.edu.cn;mliu@geo.ecnu.edu.cn
作者简介:
第一联系人:共同第一作者
基金资助:
Ruihe JIN, Yuyun YANG, Yan WU(), Jing YANG, Min LIU()
Received:
2024-07-30
Accepted:
2024-09-05
Online:
2024-11-25
Published:
2024-11-29
Contact:
Yan WU, Min LIU
E-mail:ywu@geo.ecnu.edu.cn;mliu@geo.ecnu.edu.cn
摘要:
分析了20余种有机磷酸酯 (organophosphate esters, OPEs) 同系物在杭州市城镇、耕地和林地道路灰尘中的浓度水平及空间分布特征. 其中, 磷酸三(1-氯-2-丙基)酯是丰度最高的单体, 多种OPEs在不同功能区样品中的残留量呈现出显著区域性差异, 且峰值多检测于人口密度较大和距离主干道较近的地区, 印证了人为活动和交通排放是驱动其空间分布的重要因素. 基于所获道路灰尘浓度数据, 估算了当地人群经灰尘咽入和皮肤吸收而引发的OPEs暴露速率, 推演结果表明所涉健康风险较低.
中图分类号:
金芮合, 杨妤昀, 邬言, 杨静, 刘敏. 多功能区道路灰尘中有机磷酸酯分布累积特征[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 62-73.
Ruihe JIN, Yuyun YANG, Yan WU, Jing YANG, Min LIU. Regional-specific distribution of organophosphate esters in road dust from multiple land types[J]. Journal of East China Normal University(Natural Science), 2024, 2024(6): 62-73.
表1
用于估算当地人群OPEs的Eingestion和Edermal所用参数"
人群 | 摄入率/(mg/d) | 可供接触的皮肤 表面积/(cm2/d) | 灰尘对皮肤的附着 系数/(mg/cm2) | 吸收系数/% | 暴露频率/(d/a) | 体重/kg |
成人 | 100 | 0.07 | 13 | 365 | 70.0 | |
儿童 | 200 | 0.20 | 13 | 365 | 31.8 | |
参数表示 | ingestion rate, IGR, 记为R | skin area, SA, 记为A | affinity coefficient, AF, 记为CAF | absorption coefficient, ABS, 记为CABS | exposure frequency, EF, 记为F | body weight, BW, 记为W |
表2
杭州市道路灰尘中 OPEs 的浓度水平和检出率"
OPEs | OPEs浓度水平/(ng/g) | 检出率/% | ||
中位数 | 最大值 | 最小值 | ||
TEP | 1.34 | 9.3 | 0.27 | 100 |
TCEP | 4.01 | 122.2 | <MDL | 99 |
TIPRP | <MDL | 0.2 | <MDL | 18 |
TPRP | <MDL | 0.2 | <MDL | 35 |
TCIPP | 246.07 | <MDL | 95 | |
V6 | 0.25 | 12.1 | <MDL | 82 |
TDCIPP | <MDL | 21.4 | <MDL | 4 |
RDP | 0.16 | 19.9 | <MDL | 53 |
TPHP | <MDL | <MDL | 20 | |
TDBPP | <MDL | 4.1 | <MDL | 10 |
TNBP | 1.96 | 162.4 | <MDL | 93 |
TBOEP | <MDL | 22.5 | <MDL | 13 |
EHDPHP | 1.27 | 25.3 | <MDL | 64 |
TPEP | <MDL | 0.2 | <MDL | 6 |
T35DMPP | <MDL | 3.2 | <MDL | 22 |
BPA-BDPP | 1.39 | 706.1 | <MDL | 96 |
T2IPPP | <MDL | 5.2 | <MDL | 36 |
T4tBPP | <MDL | 3.7 | <MDL | 40 |
TEHP | 14.03 | 372.1 | 1.32 | 100 |
2IPPDPP | <MDL | 7.6 | <MDL | 28 |
4IPPDPP | <MDL | 614.8 | <MDL | 24 |
TOTP | <MDL | 14.2 | <MDL | 1 |
TMTP + TPTP | <MDL | 59.0 | <MDL | 46 |
∑OPEs | 343.91 | 11.96 | 100 |
表3
不同地区道路灰尘中OPEs浓度水平比较"
地区 | OPEs浓度水平/(ng/g) | 参考文献 | ||||
TEP | TCEP | TCIPP | TNBP | EHDPHP | ||
杭州 | 1.7 | 13.8 | 318.6 | 6.0 | 3.1 | 本研究 |
北京 | 53.7 | 397.1 | 41.1 | [ | ||
南京 (城市) | 4.6 | 7.8 | 90.7 | 3.0 | 3.0 | [ |
南京 (农村) | 2.5 | 3.3 | 7.1 | 2.2 | 0.1 | |
重庆 (城市) | 25.2 | 6.7 | 68.3 | [ | ||
重庆 (农村) | 5.1 | 12.0 | 95.5 | |||
重庆 (商业区) | 2.1 | 0.6 | 9.1 | 9.9 | [ | |
河南 (城市道路灰尘) | 7.3 | 23.2 | 33.9 | 1.5 | [ | |
苏州 (道路) | 3.3 | 804.1 | [ | |||
纽约 (机场) | 12.3 | 15.9 | 26.2 | 18.8 | 1.3 | [ |
伊拉克 | 208.9 | 49.2 | 204.2 | [ |
表4
杭州市道路灰尘中OPEs浓度水平与采样点周边人口密度、距最近主干道距离之间的Kendall’s tau相关性分析结果"
TEP | TCEP | TCIPP | V6 | TNBP | EHDPHP | BPA-BDPP | TEHP | ∑OPEs | 人口密度 | |
TCEP | 0.341* | |||||||||
TCIPP | 0.285* | 0.192* | ||||||||
V6 | 0.258* | 0.444* | 0.004 | |||||||
TNBP | 0.200* | 0.289* | 0.088 | 0.413* | ||||||
EHDPHP | 0.293* | 0.399* | 0.034 | 0.381* | 0.361* | |||||
BPA-BDPP | 0.325* | 0.340* | 0.189* | 0.423* | 0.373* | 0.327* | ||||
TEHP | 0.189* | 0.423* | 0.017 | 0.597* | 0.470 | 0.430* | 0.344* | |||
∑OPEs | 0.258* | 0.279* | 0.673* | 0.155 | 0.225 | 0.186* | 0.258* | 0.203* | ||
人口密度 | 0.039 | 0.222* | –0.135 | 0.306* | 0.386* | 0.268* | 0.193* | 0.425* | 0.176 | |
距最近主干道距离 | –0.112 | –0.164* | –0.029 | –0.146 | –0.210* | –0.047 | –0.246* | –0.191* | –0.027 | –0.321* |
1 | 中华人民共和国生态环境部. 新污染物治理行动方案(征求意见稿) [EB/OL]. (2021-10-11)[2024-06-20]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202110/W020211011600835423708.pdf. |
2 | 新华社. 中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议 [EB/OL]. (2020-11-03)[2024-06-20]. http://www.gov.cn/zhengce/2020-11/03/content_5556991.htm. |
3 | WU Y, JIN R H, CHEN Q Q, et al.. Organic contaminants of emerging concern in global estuaries: Environmental occurrence, fate, and bioavailability. Critical Reviews in Environmental Science and Technology, 2023, 53 (4): 550- 575. |
4 | WANG F, XIANG L, SZE-YIN LEUNG K, et al.. Emerging contaminants: A one health perspective. The Innovation, 2024, 5 (4): 100612. |
5 | HOU M, SHI Y, NA G, et al.. A review of organophosphate esters in indoor dust, air, hand wipes and silicone wristbands: Implications for human exposure. Environment International, 2021, 146, 106261. |
6 | WU L, LI X, FAN J, et al.. Distribution characteristics, source attribution, and health risk assessment of organophosphate esters in indoor and outdoor dust from various microenvironments in Beijing. Ecotoxicology and Environmental Safety, 2023, 268, 115713. |
7 | PENG C, TAN H, GUO Y, et al.. Emerging and legacy flame retardants in indoor dust from East China. Chemosphere, 2017, 186, 635- 643. |
8 | ZHAO L, ZHANG Y, DENG Y, et al.. Traditional and emerging organophosphate esters (OPEs) in indoor dust of Nanjing, eastern China: Occurrence, human exposure, and risk assessment. Science of the Total Environment, 2020, 712, 136494. |
9 | LIANG C, MO X J, XIE J F, et al.. Organophosphate tri-esters and di-esters in drinking water and surface water from the Pearl River Delta, South China: Implications for human exposure. Environmental Pollution, 2022, 313, 120150. |
10 | XIAO K, LU Z, YANG C, et al.. Occurrence, distribution and risk assessment of organophosphate ester flame retardants and plasticizers in surface seawater of the West Pacific. Marine Pollution Bulletin, 2021, 170, 112691. |
11 | YUE C, MA S, LIU R, et al. Pollution profiles and human health risk assessment of atmospheric organophosphorus esters in an e-waste dismantling park and its surrounding area [J]. Science of the Total Environment, 2022, 806(Pt 3): 151206. |
12 | TANG J, SUN J, KE Z, et al.. Organophosphate esters in surface soils from a heavily urbanized region of Eastern China: Occurrence, distribution, and ecological risk assessment. Environmental Pollution, 2021, 291, 118200. |
13 | WANG Y, YAO Y, LI W, et al.. A nationwide survey of 19 organophosphate esters in soils from China: Spatial distribution and hazard assessment. Science of the Total Environment, 2019, 671, 528- 535. |
14 | YANG Y, CHEN P, MA S, et al.. A critical review of human internal exposure and the health risks of organophosphate ester flame retardants and their metabolites. Critical Reviews in Environmental Science and Technology, 2022, 52 (9): 1- 33. |
15 | YAO Y, LI M, PAN L, et al.. Exposure to organophosphate ester flame retardants and plasticizers during pregnancy: Thyroid endocrine disruption and mediation role of oxidative stress. Environment International, 2021, 146, 106215. |
16 | LI J, XU Y, LI N, et al.. Thyroid hormone disruption by organophosphate esters is mediated by nuclear/membrane thyroid hormone receptors: In vitro, in vivo, and in silico studies. Environmental Science & Technology, 2022, 56 (7): 4241- 4250. |
17 | YAN Z, FENG C, JIN X, et al.. Organophosphate esters cause thyroid dysfunction via multiple signaling pathways in zebrafish brain. Environmental Science and Ecotechnology, 2022, 12, 100198. |
18 | LI J, CAO H, MU Y, et al.. Structure-oriented research on the antiestrogenic effect of organophosphate esters and the potential mechanism. Environmental Science & Technology, 2020, 54 (22): 14525- 14534. |
19 | WANG Q, LAM J C, HAN J, et al.. Developmental exposure to the organophosphorus flame retardant tris(1,3-dichloro-2-propyl) phosphate: Estrogenic activity, endocrine disruption and reproductive effects on zebrafish. Aquatic Toxicology, 2015, 160, 163- 171. |
20 | LI R, WANG H, MI C, et al.. The adverse effect of TCIPP and TCEP on neurodevelopment of zebrafish embryos/larvae. Chemosphere, 2019, 220, 811- 817. |
21 | SIDDIQUE S, FARHAT I, KUBWABO C, et al.. Exposure of men living in the greater Montreal area to organophosphate esters: Association with hormonal balance and semen quality. Environment International, 2022, 166, 107402. |
22 | YANG F W, ZHAO G P, REN F Z, et al.. Assessment of the endocrine-disrupting effects of diethyl phosphate, a nonspecific metabolite of organophosphorus pesticides, by in vivo and in silico approaches. Environment International, 2020, 135, 105383. |
23 | CARIGNAN C C, MINGUEZ-ALARCON L, WILLIAMS P L, et al.. Paternal urinary concentrations of organophosphate flame retardant metabolites, fertility measures, and pregnancy outcomes among couples undergoing in vitro fertilization. Environment International, 2018, 111, 232- 238. |
24 | HOU M, SHI Y, JIN Q, et al.. Organophosphate esters and their metabolites in paired human whole blood, serum, and urine as biomarkers of exposure. Environment International, 2020, 139, 105698. |
25 | WANG L M, LUO D, LI X, et al.. Temporal variability of organophosphate flame retardant metabolites in spot, first morning, and 24-h urine samples among healthy adults. Environmental Research, 2021, 196, 110373. |
26 | YA M, YU N, ZHANG Y, et al.. Biomonitoring of organophosphate triesters and diesters in human blood in Jiangsu Province, eastern China: Occurrences, associations, and suspect screening of novel metabolites. Environment International, 2019, 131, 105056. |
27 | HOU M, ZHANG B, FU S, et al.. Penetration of organophosphate triesters and diesters across the blood-cerebrospinal fluid barrier: Efficiencies, impact factors, and mechanisms. Environmental Science & Technology, 2022, 56 (12): 8221- 8230. |
28 | JIN R, SHI J, YANG J, et al.. Efficient analysis of metabolites of industrial additives in cerebrospinal fluids. Environmental Chemistry Letters, 2024, 22 (3): 997- 1003. |
29 | 刘佳. 有机磷酸酯类阻燃剂化学氧化及微生物降解过程的机理研究 [D]. 北京: 北京科技大学, 2019. |
30 | WEI G L, LI D Q, ZHUO M N, et al.. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environmental Pollution, 2015, 196, 29- 46. |
31 | HE J, WANG Z, ZHAO L, et al.. Gridded emission inventory of organophosphorus flame retardants in China and inventory validation. Environmental Pollution, 2021, 290, 118071. |
32 | WANG Y, YAO Y, HAN X, et al.. Organophosphate di- and tri-esters in indoor and outdoor dust from China and its implications for human exposure. Science of the Total Environment, 2020, 700, 134502. |
33 | HOEHN R M, JAHL L G, HERKERT N J, et al.. Flame retardant exposure in vehicles is influenced by use in seat foam and temperature. Environmental Science & Technology, 2024, 58 (20): 8825- 8834. |
34 | TAN H, CHEN D, PENG C, et al.. Novel and traditional organophosphate esters in house dust from South China: Association with hand wipes and exposure estimation. Environmental Science & Technology, 2018, 52 (19): 11017- 11026. |
35 | WU Y, MILLER G Z, GEARHART J, et al.. Children’s car seats contain legacy and novel flame retardants. Environmental Science & Technology Letters, 2019, 6 (1): 14- 20. |
36 | CHEN D, LETCHER R J, CHU S.. Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography-tandem quadrupole mass spectrometry. Journal of Chromatography A, 2012, 1220, 169- 174. |
37 | JIN R H, WU Y, HE Q, et al.. Ubiquity of amino accelerators and antioxidants in road dust from multiple land types: Targeted and nontargeted analysis. Environmental Science & Technology, 2023, 57 (28): 10361- 10372. |
38 | LV Y Z, LUO X J, LU R F, et al.. Multi-pathway exposure assessment of organophosphate flame retardants in a southern Chinese population: Main route identification with compound-specificity. Environment International, 2023, 183, 108352. |
39 | WU Y, FERNIE K J, LETCHER R J, et al.. Exposure of peregrine falcons to halogenated flame retardants: A 30 year retrospective biomonitoring study across North America. Environmental Science & Technology, 2024, 58 (16): 7154- 7164. |
40 | WANG L, JIA Y, HU J.. Nine alkyl organophosphate triesters newly identified in house dust. Environment International, 2022, 165, 107333. |
41 | SONEGO E, SIMONETTI G, DI FILIPPO P, et al.. Characterization of organophosphate esters (OPEs) and polyfluoralkyl substances (PFASs) in settled dust in specific workplaces. Environmental Science and Pollution Research International, 2022, 29 (34): 52302- 52316. |
42 | TAN H, YANG L, YU Y, et al.. Co-existence of organophosphate di- and tri-esters in house dust from South China and Midwestern United States: Implications for human exposure. Environmental Science & Technology, 2019, 53 (9): 4784- 4793. |
43 | WANG X, ZHU Q, YAN X, et al.. A review of organophosphate flame retardants and plasticizers in the environment: Analysis, occurrence and risk assessment. Science of the Total Environment, 2020, 731, 139071. |
44 | 高立红. 北京市城市环境有机磷酸酯污染水平和分布特征研究 [D]. 北京: 北京科技大学, 2016. |
45 | CHEN Y, ZHANG Q, LUO T, et al.. Occurrence, distribution and health risk assessment of organophosphate esters in outdoor dust in Nanjing, China: Urban vs. rural areas. Chemosphere, 2019, 231, 41- 50. |
46 | HE M J, LU J F, MA J Y, et al.. Organophosphate esters and phthalate esters in human hair from rural and urban areas, Chongqing, China: Concentrations, composition profiles and sources in comparison to street dust. Environmental Pollution, 2018, 237, 143- 153. |
47 | 杨志豪, 何明靖, 杨婷, 等.. 有机磷酸酯在重庆不同城市功能区土壤的分布特征及来源. 环境科学, 2018, 39 (11): 5135- 5141. |
48 | PANG L, YANG H, PANG R, et al.. Occurrence, distribution, and risk assessment of organophosphate esters in urban street dust in the central province of Henan, China. Environmental Science and Pollution Research International, 2019, 26 (27): 27862- 27871. |
49 | 李静, 王俊霞, 许婉婷, 等.. 道路灰尘中有机磷阻燃剂污染特征及人体暴露. 环境科学, 2017, 38 (10): 4220- 4227. |
50 | LI W, WANG Y, KANNAN K.. Occurrence, distribution and human exposure to 20 organophosphate esters in air, soil, pine needles, river water, and dust samples collected around an airport in New York state, United States. Environment International, 2019, 131, 105054. |
51 | AL-OMRAN L S, GBADAMOSI M R, STUBBINGS W A, et al.. Organophosphate esters in indoor and outdoor dust from Iraq: Implications for human exposure. Emerging Contaminants, 2021, 7, 204- 212. |
52 | WU Y, VENIER M, SALAMOVA A.. Spatioseasonal variations and partitioning behavior of organophosphate esters in the Great Lakes atmosphere. Environmental Science & Technology, 2020, 54 (9): 5400- 5408. |
53 | MATSUKAMI H, WANNOMAI T, UCHIDA N, et al.. Silicone wristband- and handwipe-based assessment of exposure to flame retardants for informal electronic-waste and end-of-life-vehicle recycling workers and their children in Vietnam. Science of the Total Environment, 2022, 853, 158669. |
54 | 秦威振, 毛丽莎, 陈裕华, 等.. 深圳市室内降尘中有机磷酸酯阻燃剂的分布特征及健康风险评估. 环境与健康, 2019, 36 (12): 1074- 1077. |
55 | 周佳敏, 赵静, 韦旭, 等.. 上海市不同微环境室内灰尘中有机磷酸酯污染特征及健康风险评价. 环境化学, 2023, 42 (7): 2317- 2327. |
56 | 刘琴, 印红玲, 李蝶, 等.. 室内灰尘中有机磷酸酯的分布及其健康风险. 中国环境科学, 2017, 37 (8): 2831- 2839. |
57 | ALI N, DIRTU A C, VAN DEN EEDE N, et al.. Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment. Chemosphere, 2012, 88 (11): 1276- 82. |
58 | GBADAMOSI M R, ABDALLAH M A-E, HARRAD S.. A critical review of human exposure to organophosphate esters with a focus on dietary intake. Science of the Total Environment, 2021, 771, 144752. |
59 | HAMZAI L, LOPEZ GALVEZ N, HOH E, et al.. A systematic review of the use of silicone wristbands for environmental exposure assessment, with a focus on polycyclic aromatic hydrocarbons (PAHs). Journal of Exposure Science and Environmental Epidemiology, 2021, 32 (2): 244- 258. |
[1] | 李保, 金芮合, 张雨欣, 阮蔓菁, 邬言, 杨静, 刘敏. 长江口有机磷酸酯环境多介质传输分配行为[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 99-113. |
[2] | 顾晨铭, 杨静, 李晔, 黄晔, 邬言, 尹国宇, 金芮合, 杨毅, 刘敏. 城市群新污染物多介质归趋、风险及模拟研究进展[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 24-38. |
[3] | 杨静, 邬言, 李月, 刘霞, 杨丁业, 陈圆圆, 金芮合, 李晔, 刘敏. 上海农田土壤中六溴环十二烷的赋存特征及健康风险评估[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 178-187. |
[4] | 杨丁业, 杨静, 金芮合, 丁方方, 张雨欣, 刘敏. 合肥市土壤中卤代阻燃剂的赋存特征及风险评估[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 161-177. |
[5] | 李颖, 黄晔, 李晔, 刘敏. 上海市二噁英的时空分布特征与呼吸暴露风险[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 124-135. |
[6] | 崔铁峰, 李道季. 人体微纳塑料研究现状及存在的主要问题[J]. 华东师范大学学报(自然科学版), 2024, 2024(6): 1-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||