[1] RUBIN S D. TRISO-coated particle fuel phenomenon identification and ranking tables (PIRTs) for fission product transport due to manufacturing, operations and accidents[R]. USA: US-NRC, 2004. [2] VERFONDERN K. Fuel performance and fission product behavior in gas-cooled reactors No. TECDOC-978[R]. Vienna: IAEA, 1997. [3] MINATO K, SAWA K, KOYA T, et al. Fission product release behavior of individual coated fuel particles for high-temperature gas-cooled reactors[J]. Nucl Technol, 2000, 131: 36-47. [4] SCHENK W, POTT G, NABIELEK H. Fuel accident performance testing for small HTRs[J]. J Nucl Mater, 1990, 175: 19-30. [5] MINATO K, OGAWA T, FUKUDA K, et al. Release behavior of metallic fission products from HTGR fuel particles at 1 600 to 1 900 ℃[J]. J Nucl Mater, 1993, 202: 47-53. [6] FRIEDLAND E, MALHERBE J B, VANDERBERG N G, et al. Study of silver diffusion in silicon carbide[J]. J Nucl Mater, 2009, 389: 326-331. [7] MACLEAN H, BALLINGER R, KOLAYA L, et al. The effect of annealing at 1500 ℃ on migration and release of ion implanted silver in CVD silicon carbide[J]. J Nucl Mater, 2006, 357: 31-47. [8] BULLOCK R E. Fission-product release during postirradiation annealing of several types of coated fuel particles[J]. J Nucl Mater, 1984, 125: 304-319. [9] PETTI D, BUONGIORNO J, MAKI J, et al. Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance[J]. Nucl Eng Des, 2003, 222: 281-297. [10] NABIELEK H, BROWN P E, OFFERMAN P. Silver release from coated particle fuel[J]. Nucl Technol, 1977, 35: 483-493. [11] VERFONDERN K, MARTIN R C, MOORMANNN R. Methods and data for HTGR fuel performance and radionuclide release modeling during normal operation and accidents for safety analyses No. JUEL-2721[R]. Germany: Forschungszentrum Jülich GmbH, 1993. [12] AMIAN W, STOVER D. Diffusion of silver and cesium in silicon-carbide coatings of fuel particles for hightemperature gas-cooled reactors[J]. Nucl Technol, 1983, 61: 475-486. [13] FRIEDLAND E, MALHERBE J B, VANDERBERG N G, et al. Study of silver diffusion in silicon carbide [J]. J Nucl Mater, 2009, 389: 326-331. [14] MACLEAN H J. Silver transport in CVD silicon carbide [D]. Boston: MIT, 2004. [15] SHRADER D, KHALIL S, GERCZAK T, et al. Ag diffusion in cubic silicon carbide[J]. J Nucl Mater, 2010, 408: 257-271. [16] KHALIL S, SWAMINATHAN N, SHRADER D, et al. Diffusion of Ag along 3 grain boundaries in 3C-SiC[J]. Phys Rev B, 2011, 84: 214104. [17] VOTER A F. Hyperdynamics: Accelerated molecular dynamics of infrequent events[J]. Phys Rev Lett, 1997, 78: 3908-3911. [18] TERSOFF J. New empirical approach for the structure and energy of covalent systems[J]. Phys Rev B, 1988, 37: 6991-7000. [19] TERSOFF J. New empirical model for the structural properties of silicon[J]. Phys Rev Lett, 1986, 56: 632-635. [20] TERSOFF J. Empirical interatomic potential for carbon, with applications to amorphous carbon[J]. Phys Rev Lett, 1988, 61: 2879-2882. [21] TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[J]. Phys Rev B, 1989, 39: 5566-5568. [22] TERSOFF J. Empirical interatomic potential for silicon with improved elastic properties[J]. Phys Rev B, 1988, 38: 9902-9905. [23] FOILES S M, BASKES M I, DAW M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Phys Rev B, 1986, 33: 7983-7991. [24] LI X P, CEPERLEY D M, MARTIN R M. Cohesive energy of silicon by the Green's-function monte carlo method[J]. Phys Rev B, 1991, 44: 10929-10932. [25] KOHAN A F, CEDER G, MORGAN D, et al. First-principles study of native point defects in ZnO[J]. Phys Rev B, 2000, 61: 15019-15027. [26] MURNAGHAN F D. The compressibility of media under extreme pressures[J]. Proceeding of the National Academy of Sciences of the United States of America, 1944, 30(9): 244-247. [27] BUTLER K T, VULLUM P E, MUGGERUD A M, et al. Structural and electronic properties of silver/silicon interfaces and implications for solar cell performance [J]. Phys Rev B, 2011, 83(23): 2155-2161. [28] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186. [29] BROMMER P, GÄHLER F. Potfit: Effective potentials from ab -initio data [J]. Simul Mater Sci Eng, 2007, 15: 295-304. [30] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865-3868. [31] MARTIN R M. Electronic Structure: Basic Theory and Practical Methods[M]. Cambridge: Cambridge University Press, 2004. [32] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Phys Rev B, 1976, 13: 5188-5200. [33] ERHART P, ALBE K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J]. Phys Rev B, 2005, 71(3): 035211. [34] MOORE C E. Atomic Energy Levels Volumer[M]. Washington D C: NBS, 1949. [35] AADERSON O L. The use of ultrasonic measurements under modest pressure to estimate compression at high pressure[J]. J Phys Chem Solids, 1966, 27: 547-565. [36] DONOHUE J. The structures of the elements[J]. Diamond and Related Materials, 1974, 24(4): 436. DOI: 10.1016/j.diamond.2011.01.035. [37] YIN M T, COHEN M L. Microscopic theory of the phase transformation and lattice dynamics of Si [J]. Phys Rev Lett, 1980, 45: 1004-1007. [38] CAR R, KELLY P J, OSHIYAMA A, et al. Microscopic theory of atomic diffusion mechanisms in silicon [J]. Phys Rev Lett, 1984, 52: 1814-1817. [39] BARAFF G A, SCHLUTER M. Migration of interstitials in silicon [J]. Phys Rev B, 1984, 30: 3460-3469. [40] BREWER L. Lawrence berkeley laboratory report No. LB-3720[R]. California: Lawrence Berkeley Laboratory, 1977. [41] MCSKIMIN H J, ANDREATCH P. The elastic stiffness moduli of diamond[J]. J Appl Phys, 1972, 43: 985-987. [42] BERNHOLC J, ANTONELLI A, DELSOLE T M, et al. Mechanism of self-diffusion in diamond[J]. Phys Rev Lett, 1988, 61: 2689-2692. [43] LEE D H, JOANNOPOULOS J D. Simple scheme for deriving atomic force constants: Application to SiC[J]. Phys Rev Lett, 1982, 48: 1846-1849. |