[1] 余光伟, 雷恒毅, 刘广立, 等. 重污染感潮河道底泥释放特征及其控制技术研究[J]. 环境科学报, 2007, 27(9):1476-1484.
[2] 余光伟. 重污染感潮河道底泥原位修复技术与工程应用研究[D]. 广州:中山大学, 2007.
[3] 雷恒毅, 余光伟, 刘广立, 等. 珠江流域重污染感潮河道黑臭治理新技术[J]. 中山大学学报(自然科学版), 2007, 46(3):134-136.
[4] 李真, 黄民生, 何岩, 等. 铁和硫的形态转化与水体黑臭的关系[J]. 环境科学与技术, 2010, 33(6):1-3.
[5] 李文超, 王文浩, 何岩, 等. 黑臭河道沉积物中硫铁行为与氮磷循环的耦合机制[J]. 华东师范大学学报(自然科学版), 2015, 2(1):1-8.
[6] 李文超. 曝气扰动下城市黑臭河道底泥内源硫、铁行为与氮循环耦合作用研究[D]. 上海:华东师范大学, 2016.
[7] 国家环保局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
[8] 陈玉霞. 曝气复氧条件下黑臭河道底泥内源氮的迁移转化行为研究[D]. 上海:华东师范大学, 2007.
[9] HE Y, CHEN Y X, ZHANG Y F, et al. Role of aerated turbulence in the fate of endogenous nitrogen from malodorous river sediments[J]. Environmental Engineering Science, 2013, 30(1):11-16.
[10] 何岩, 沈叔云, 黄民生, 等. 城市黑臭河道底泥内源氮硝化-反硝化作用研究[J]. 生态环境学报, 2012, 21(6):1166-1170.
[11] 李志洪. 曝气扰动模式对黑臭河道底泥内源营养盐行为的影响作用及氮转化功能菌群响应规律研究[D]. 上海:华东师范大学, 2015.
[12] 尹洪斌. 太湖沉积物形态硫赋存及其与重金属和营养盐关系研究[D]. 南京:中国科学院南京地理与湖泊研究所, 2008.
[13] 焦涛. 城市河道沉积物-水体系硫化物赋存特征及反硫化过程研究[D], 南京:河海大学, 2007.
[14] 李伟杰, 汪永辉. 铁离子在水体中价态的转化及其与河道黑臭的关系[J]. 净水技术, 2007, 26(2):35-37.
[15] 尹洪斌,范成新, 李宝, 等. 太湖北部沉积物中铁硫的地球化学特征研究[J]. 地球化学, 2008, 37(6):595-601.
[16] TORRENTÓ C, URMENETA J, OTERO N, et al. Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite[J]. Chemical Geology, 2011, 287(1/2):90-101.
[17] JUNCHER JØRGENSEN C, JACOBSEN O S, ELBERLING B, et al. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment[J]. Environmental Science & Technology, 2009, 43(13):4851-4857.
[18] YANG X N, HUANG S, WU Q H, et al. Nitrate reduction coupled with microbial oxidation of sulfide in river sediment[J]. Journal of Soils Sediments, 2012, 12(9):1435-1444.
[19] SCHWIENTEK M, EINSIEDL F, STICHLER W, et al. Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system[J]. Chemical Geology, 2008, 255(1):60-67.
[20] HAYAKAWA A, HATAKEYAMA M, ASANO R, et al. 2013. Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-Rich ecosystem[J]. Journal of Geophysical Rsearch:Biogeosciences, 2013, 118(2):639-649.
[21] HAAIJER S C M, LAMERS L P M, SMOLDERS A J P, et al. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands[J]. Geomicrobiology Journal, 2007, 24(5):391-401.
[22] SCHIPPERS A, JØRGENSEN B B. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(1):85-92.
[23] FDZ-POLANCO F, FDZ-POLANCO M, FERNANDEZ N, et al. New processes for simultaneous removal of nitrogen and sulfur under anearobic conditions[J]. Water Research, 2001, 35(4):1111-1114.
[24] 董凌霄. 硫酸盐还原对氨氧化的影响及其抑制特性研究[J]. 西安建筑科技大学, 2006, 38(3):425-429.
[25] SHEN J P, XU Z H, HE J Z. Frontiers in the microbial processes of ammonia oxidation in soils and sediments[J]. Journal of Soils Sediments, 2014, 14(6):1023-1029.
[26] DUMONT M G, MURRELL J C. Stable isotope probing-linking microbial identity to function[J]. Nature Reviews Microbiology, 2005, 3(6):499-504.
[27] BRUNET R C, GARCIA-GIL L J. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J]. FEMS Microbiology Ecology, 1996, 21(2):131-138.
[28] LU W W, ZHANG H L, SHI W M. Dissimilatory nitrate reduction to ammonium in an anaerobic agricultural soil as affected by glucose and free sulfide[J]. European Journal of Soil Biology, 2013, 58:98-104. |