[1] 孙起麟. 艾滋病病毒感染和治疗动力学的理论研究与应用[D]. 北京:北京科技大学, 2015.
[2] 王开发, 邱志鹏, 邓国宏. 病毒感染群体动力学模型分析[J]. 系统科学与数学, 2003, 32(4):433-443.
[3] PERELSON A S, NELSON P W. Mathematical models of HIV dynamics in vivo[J]. SIAM Review, 1999, 41(1):3-44
[4] NOWAK M A, ANDERSON R M, BOERLIJST M C, et al. HIV-1 evolution and disease progression[J], Science, 1996, 274(5289):1008-1011.
[5] KOROBEINIKOV A. Global properties of basic virus dynamics models[J]. Bulletin of Mathematical Biology, 2004, 66(4):879-883.
[6] NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses[J]. Science, 1996, 272(5258):74-79.
[7] SONG X Y, NEUMANN A U. Global stability and periodic solution of the viral dynamics[J]. Journal of Mathematical Analysis and Applications, 2007, 329(1):281-297.
[8] BEDDINGTON J R. Mutual Interference Between Parasites or Predators and its Effect on Searching Efficiency[J]. Journal of Animal Ecology, 1975, 44(1):331-340.
[9] DEANGELIS D L, GOLDSTEIN R A, O'NEILL R V. A model for tropic interaction[J]. Ecology, 1975, 56(4):881-892.
[10] XU R. Global stability of an HIV-1 infection model with saturation infection and intracellular delay[J]. Journal of Mathematical Analysis and Application, 2011, 375(1):75-81.
[11] GUO T, LIU H H, XU C L, et al. Dynamics of a delayed HIV-1 infection model with saturation incidence rate and CTL immune response[J]. International Journal of Bifurcation and Chaos, 2016, 26(4):1-26.
[12] BAGASRA O, POMERANTZ R J. Human immunodeficiency virus type-I provirus is demonstrated in peripheral blood monocytes in vivo:A study utilizing an in situ polymerase chain reaction[J]. AIDS Research and Human Retroviruses, 1993, 9(1):69-76.
[13] PACE M J, AGOSTO L, GRAF E H. HIV reservoirs and latency models[J]. Virology, 2011, 411(2):344-354.
[14] CAPISTRÁN M A. A study of latency, reactivation and apoptosis throughout HIV pathogenesis[J]. Mathematical and Computer Modelling, 2010, 52(7/8):1011-1015.
[15] WANG H B, XU R, WANG Z W, et al. Global dynamics of a class of HIV-1 infection models with latently infected cells[J]. Nonlinear Analysis:Modeling and Control, 2015, 20(1):21-37.
[16] HALE J K, LUNEL S V. Introduction to Functional Differential Equations[M]. New York:Springer, 1993. |