ZHAO Xian-feng, SHU Yong-lu, ZHOU Yun-hua. Subspace-supercyclicity and common subspace-supercyclic vectors[J]. Journal of East China Normal University(Natural Sc, 2012, 2012(1): 106-112, 120.
{1}ANSARI S I. Hypercyclic and cyclic vectors[J]. J Funct Anal, 1995,128: 374-383.{2}BAYART F, MATHERON E. Dynamics of linear operators[M]. Cambridge:Cambridge University Press, 2009.{3}ROLEWICZ S. On orbits of elements[J]. Studia Math, 1969, 32: 17-22.{4}YOUSEFI B, REZAEI H. On the supercyclicity and hypercyclicity of theoperator Algebra[J]. Acta Mathematica Sinica, English Series, 2008,24(7): 1221-1232.{5}BOURDON P S, FELDMAN N S. Somewhere dense orbits are everywheredense[J]. Indiana Univ Math, 2003, 52: 811-819.{6}MADORE B F, MARTINEZ-AVENDANO R A. Subspace-hypercyclicity[J]. JMath Anal Appl, 2011, 373: 502-511.{7}KITAL C. Invariant closed sets for linear operators[D]. Toronto:Univ of Toronto, 1982.{8}ARON R, BES J, LEON F, PERIS A. Operators with common hypercyclicsubspace [J]. Operator Theory, 2005, 54(2): 251-260.{9}BAYART F. Common hypercyclic vectors for composition operators[J].Operator Theory, 2004, 54: 353-370.{10}BAYART F, MATHERON E. How to get common universal vectors[J].Indiana Univ Math, 2007, 56: 553-580.{11}CHAN K, SANDERS R. Common supercyclic vectors for a path ofoperators[J]. J Math Anal Appl, 2008, 337: 646-658.{12}CHAN K, SANDERS R. Two criteria for a path of operators to havecommon hypercyclic vectors[J]. Operator Theory, 2009, 61(1):191-233.{13}SALAS H N. Hypercyclic weighted shifts[J]. Trans Amer Math Soc,1995, 347(3): 993-1004.{14}SALAS H N. Supercyclicity and weighted shifts[J]. Studia Math,1999, 135(1): 55-74.