Pricing option with transaction costs under the subdiffusive Black-Scholes model
GU Hui 1, ZHANG Yun-xiu 1,2
1. Department of Mathematics, East China Normal University, Shanghai 200241, China; 2. Department of Mathematics, Nanjing Forest University, Nanjing 210037, China
GU Hui, ZHANG Yun-xiu. Pricing option with transaction costs under the subdiffusive Black-Scholes model[J]. Journal of East China Normal University(Natural Sc, 2012, 2012(5): 85-92.
{1} BLACK F, SCHOLES M. The pricing of options and corporateliabilities[J]. Journal of Political Economy, 1973, 81: 637-654.{2} MAGDZIARZ M. Black-Scholes formulain subdiffusive regime[J]. Journal of Statistic Physics, 2009, 136:553-564.{3} MEERSCHAERT M M, NANE E, Xiao Y. Large deviations for localtime fractional Brownian motion and applications[J]. Journal ofMathematical Analysis and Applications, 2008, 346: 432-445.{4} BERTOIN J. L\'{e}vy Processes[M]. Cambridge:Cambridge UniversityPress, 1996.{5} JANICKI A, WERON A. Simulation and ChaoticBehavior of $\alpha$-StableStochastic Processes[M]. New York: Marcel Dekker, 1994.{6} MAGDZIARZ M. Path properties of subdiffusion-a martingaleapproach[J]. Stochastic Models, 2010, 26: 256-271.{7} MAGDZIARZ M. Stochastic representation of subdiffusion processeswith time-dependent drift[J]. Stochastic Processes and TheirApplications, 2009, 119: 3238-3252.{8} LAGERAS A N. A renewal-process-type expressionfor the moments of inverse subordinators[J]. Journal of AppliedProbability, 2005, 42: 1134-1144.{9} LELAND H E. Option pricingand replication with transactions costs[J]. The Journal of Finance,1985, 40: 1283-1301.{10} JANCZURA J, WY{\L}OMA\'{N}SKA A. Subdynamicsof financial data from fractional Fokker-Planck equation[J].Acta Physica Polonica B,2009, 40: 1341-1351.