REN Han WU Hao. Space theory on graphs: The linearly independence methods in graph theory (II)[J]. Journal of East China Normal University(Natural Sc, 20120, 2012(6): 139-156.
{1}BONDY J A, MURTY U S R. Graph Theory [M]. GTM244 Berlin: Springer,2008.{2}BABAI L, FRANKL P. Linear Algebra Methods in Combinatorics [M]. ToAppear.{3}LIU Yanpei. Embeddability in Graphs(in Chinese) [M]. Beijing:Science Press Beijing, 2010: 241-244.{4}THOMASSEN C. Totally odd $K$-4 subdisions in 4-chromatic graphs [R].Math Report No.1998-04. Denmak: Technical Uni of Denmark, 1998.{5}REDEI L. Ein kombinatorischer Satz [J]. Acta Litterarum acScientiarum Szeged, 1934(7): 39-43.{6}FORCADE R. Parity of paths and circuits in tournaments [J]. DiscreteMathematics, 1973(6): 115-118.{7}SZELE T, Kombinatorische Untersuchungen uber den gerichtetenvollstandigen Graphen [J]. Mat Fiz Lapok, 1943(50): 223-256.{8}ADAM A. Bemerkungen zum graphentheoretischen Satze von I, Fidrich[J]. Acta Math. Acad Sci Hungar, 1965(16): 9-11.{9}TUTTE W T. On Hamiltonian circuits [J]. J London MathematicalSociety, 1968(21): 98-101.{10}THOMASON A. Hamiltonian cycles and uniquely colourable graphs[C]//Advances in Graph Theory: Annals of Discrete Mathematics 3.Amsterdam: North-Holland, Amsterdam, 1978: 259-268.{11}KRAWCZYK A. A note on finding a second hamiltonian cycle in cubicgraphs[J]. Preprint, Dec 5, 1995.{12}BLOKHUIS A. Polynomials in Finite Geometrial and Combinorics, inSurveys in Combinatorics [C]//Proc. $14^\mathrm{th}$ BritishCombinatorial Conference, London Math. Soc. Lecture Notes Ser. 187.Cambridge: Combridge University Press, 1993, 35-52.{13}THOMASSEN C. Whitney's 2-switching theorem, cycle space, and arcmappings of directed graphs [J]. Journal of Combinotorial TheorrySer B, 1989(46): 257-291.{14}BONDY J A, LOVASZ L. Cycles through specified vertices of a graph[J]. Combinatorica, 1981(1): 117-140.{15}TUTTE W T. How to draw a graph [J]. Proceedings of the LondonMathematical Society, 1963(13): 743-768.{16}REN Han, LIU Yanpei, MA Dengju, et al. Generating cycle space ofgraph on surfaces with mall genera [J]. European J Combinatorics,2004(25): 1087-1105.{17}REN Han, DENG Mo. Short cycles structures and an open problem byMohar and Thomassen [J]. Science in China Ser A, 2006, 49(2):212-224.{18}HARTMAN I B A. Long cycles generate the cycle space of a graph [J].European J Combinatorics, 1984(4): 237-246.{19}WHITNEY H. Congruent graphs and the connectivity of graphs [J].American J Mathematics, 1932(45): 150-168.{20}GOLDERG M, MOON J W. Arc mappings and tournament isomorphisms [J]. JLondon Mathematical Society, 1971(3): 373-384.{21}MCCUAIG W D, ROSENFELD M. Parity of edges containing specified edges[C]//Cycles in Graphs: Annals of Discrete Mathematics 27. Amsterdam:North-Holland, 1985: 419-431.{22}LOVASZ L. Problem 5 [J]. Periodica Mathematica Hungariaca, 1974(4):82.{23}REN Han, DENG Mo. Minimum cycle bases for graphs on surfaces [J].Discrete Math, 2007(307): 2654-2660.{24}REN Han, CAO Ni. Finding short cycles in embedded graphs [J]. FrontMath in China, 2010, 5(2): 319-327.{25}REN Han, CAO Ni. Finding more short cycles in weighted graphs [J].Submitted.{26}ROBERTSON N, SEYMOUR P D. Graph minors XIII: The disjoint pathsproblem [J]. J Combinatorial Theory Ser B, 1995, 63: 65-110.{27}SEYMOUR P D. Matroid minors [M]//Handbook of Combinatorics.Amsterdam: North-Holland, 1985: 419-431.{28}WHITNEY H. Planar graphs [J]. Fund Math, 1933(21): 73-84.{29}LEFSHETZ S. Planar graphs and related topics [J]. Proc Nat Acta Sci,1965, (54): 1763-1765{30}MACLANE S. A combinatorial condition for planar graphs [J]. FundMath, 1937, (28): 22-32.