JIANG Bing-li, LIU Yin-ping. Predictor homotopy analysis method and its application to two nonlinear systems[J]. Journal of East China Normal University(Natural Sc, 2013, 2013(3): 131-139,148.
{1}LIAO S J. Beyond Perturbation: Introduction to the Homotopy AnalysisMethod[M]. London: Chapman and Hall/CRC, 2004.{2}LIAO S J. An approximate solution technique not depending on smallparameters: a special example[J]. International Journal ofNon-Linear Mechanics, 1995, 30(3): 371-380.{3}LIAO S J. Homotopy analysis method: A new analytical technique fornonlinear problems[J]. Communications in Nonlinear Science andNumerical Simulation, 1997, 2(2): 95-100.{4}LIAO S J. On the homotopy analysis method for nonlinear problems[J].Applied Mathematics and Computation, 2004, 147(2): 499-513.{5}WAZWAZ A M. A reliable algorithm for obtaining positive solutionsfor nonlinear boundary value problems[J]. Computers \& Mathematicswith Applications, 2001, 41(10-11): 1237-1244.{6}BASHA H A, KASSAB B G. Analysis of water distribution systems usinga perturbation method[J]. Applied Mathematical Modelling, 1996,20(4): 290-297.{7}KHANIN R, CARTMELL M, GILBERT A. A computerised implementation ofthe multiple scales perturbation method using Mathematica[J].Computers \& Structures, 2000, 76(5): 565-575.{8}WANG M H, KUO Y E. A perturbation method for solving linearsemi-infinite programming problems[J]. Computers \& Mathematics withApplications, 1999, 37(4-5): 181-198.{9}MA W X, FUCHSSTEINER B. Integrable theory of the perturbationequations[J]. Chaos, Solitons \& Fractals, 1996, 7(8): 1227-1250.{10}MA W X, HUANG T W, ZHANG Y. A multiple exp-function method fornonlinear differential equations and its application[J]. PhysicaScripta, 2010, 82(6): 065003.