Global nonexistence for nonlinear $p(x)$-Kirchhoff systems with dynamic boundary conditions
LI Xi-liu1, MU Chun-lai1, ZENG Rong2, ZHOU Shou-ming1
1. College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China; 2. School of Economic Mathematics, Southwestern
University of Finance and Economics, Chengdu 611130, China
LI Xi-liu, MU Chun-lai, ZENG Rong, ZHOU Shou-ming. Global nonexistence for nonlinear $p(x)$-Kirchhoff systems with dynamic boundary conditions[J]. Journal of East China Normal University(Natural Sc, 2013, 2013(3): 149-163,175.
{1}CONRAD F, MORGUL \"{O}. On the stabilization of a flexible beam witha tip mass[J]. SIAM J Control Optim. 1998, 36: 1962-1986.{2}CAVALCANTE M M, CAVALCANTE V N, SORIANO J A. Global existence anduniformdecay rates for the Kirchhoff--Carrier equationwith nonlineardissipation[J]. Adv Differential Equations, 2001, 6: 701-730.{3}WU S T, TSAI L Y. Blow-up for solutions for some nonlinear waveequations of Kirchhoff type with some dissipation[J]. Nonlinear AnalTMA, 2006, 65: 243-264.{4}AUTUORI G, PUCCI P, SALAVATORI M C. Kirchhof systems with dynamicboundary conditions[J], Nonlinear Anal TMA, 2010, 73: 1952-1965.{5}KOVACIK O, RAKOSNIK J. On spaces $L^{p(x)}$ and $W^{1,p(x)}$[J].Czechoslovak Math J, 1991, 41: 592-618.