[1] VAPNIK V N. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1995.
[2] 朱树先,张仁杰.支持向量机核函数选择的研究[J].科学技术与工程,2008,8(16):4513-4517.
[3] BOTTOU L, CORTES C, DENKER J, et al. Comparison of Classifier Methods: A Case Study in Handwritten Digit Recognition. Computer Vision & Image Processing [C]//Proceedings of the 12th IAPR International Conference. Jerusalem: [s.n.],1994: 77-87.
[4] DEBNATH R, TAKAHIDE N, TAKAHASHI H. A decision based one-against-one method for multi-class support vector machine[J]. PATTERN ANALYSIS & APPLICATIONS, 2004,7: 164-175.
[5] PLATT J C. Fast Training of Support Vector Machines Using Sequential Minimal Optimization [M]. [s.l.]: MIT Press, 1998.
[6] 张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
[7] TAKAHASHI F, ABE S. Decision-Tree-Based Multi-Class Support Vector Machines[C]//Proceeding of ICONIP’02. Singapore: IEEE Press, 2002.
[8] Sogou Lab Data.文本分类语料库[DB/OL].[2012-12-24].
[9] CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.
[10] ICTCLAS.汉语分词系统[DB/OL].[2012-12-23]. http://www.ictclas.org/.
[11] YANG Y M, PEDERSEN J O. A Comparative Study on Feature Selection in Text Categorization[C]. International Conference on Machine Learning. 1997.
[12] POWERS D M W. Evaluation: from precision, recall and F-factor to ROC, informedness, markedness & correlation[J]. Journal of Machine Learning Technologies, 2004, 2: 37-63.
[13] KOHAVI R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. 1995, 2(12): 1137-1143. |