SONG Ci. Boundary value apaproach to solve a class of singularly perturbed problems with spike-type contrast structure[J]. Journal of East China Normal University(Natural Sc, 2013, 2013(6): 46-56.
{1} MOBAN K, KADALBAJOO, REDDY Y N. A boundary value method for a class of nonlinear singular perturbation problem [J]. Appl. Numer. 1988, 4:587-594.{2} KUMAR M, MISHRA H K, SINGH P. A boundary value approach for a class of linear singularly perturbed boundary value problems [J]. Adva. Engi. Soft. 2009, 40:298-304.{3} PLAK R C, MIHRELOV A C. 在非均匀化学物理中的自组织化过程[M]. 莫斯科: 莫斯科科学出版社, 1983.{4} ROMANOVSHGE U M, SJTEGANOV M B, CHRONOVSHGE D C, 数学的生物物理[M]. 莫斯科: 莫斯科科学出版社, 1984.{5} 倪明康, 林武忠. 奇异摄动问题中的渐近理论[M]. 北京: 高等教育出版社, 2008.{6} 倪明康, 林武忠. 奇异摄动方程解的渐近展开[M]. 北京: 高等教育出版社, 2008.{7} 王爱峰, 倪明康. 二阶非线性奇摄动方程脉冲状空间对照结构[J]. 数学物理学报, 2009.{8} 陈丽华, 徐洁, 倪明康. 一类三阶非线性常微分方程的奇摄动边值问题[J]. 华东师范大学学报\,(自然科学版), 2008(3): 0012-09.{9} XIE F, WANG J, ZHANG W J, HE M. A novel method for a class of parameterized singularly perturbed boundary value problems [J]. Comput. Appl. Math. 2008, 213: 258-267.{10} KUMAR M, SINHG P, MISHRA H K. A recent survey on computational techniques for solving singularly perturbed boundary value problems[J]. Int J Comput Math 2007, 84: 1439-1463.{11} VIGO-AGUIAR J, NATESAN S. An efficient numerical method for singualar perturbation problems [J]. Comput Appl Math. 2006, 190: 287-303.