[3]甘敏, 彭辉. 一种新的自适应惩罚函数算法求解约束优化问题~[J].信息与控制, 2009, 38(1): 24-28.[4]王宜举, 修乃华. 非线性最优化理论与方法~[M]. 北京: 科学出版社, 2012:200-220.[5]TESSEMA B, YEN G G. A self adptive penalty function based algorithm for constrained optimization [C]//Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2006:246-253.[6]HOUCK C R, JOINES J A. On the use of non-staionary penalty functions to solve nonlinear constrained optimization problems with GA's[C]//Proceedings of the First IEEE Conference on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 1994: 579-584.[7]闫妍. 一种新的自适应遗传算法[D]. 哈尔滨: 哈尔滨工程大学, 2010.[8]华东师范大学数学系. 数学分析(上)~[M]. 北京: 高等教育出版社, 2010:160-162.[9]李广民, 刘三阳. 应用泛函分析原理~[M]. 西安: 西安电子科技大学出版社,2003: 88-95.[10]RUDIN W. Real and Complex Analysis (3rd Edition) [M]. Beijing: China Machine Press, 2006: 103-108.[11]HADI-ALOUNE A B, BEAN J C. A genetic algorithm for themultiple-choice integer program [J]. Operations Research, 1997,45(1): 92-101.[12]RANARSSON T P, YAO X. Stochastic ranking for constrainedevolutionary optimization [J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294.[13]FAMANI R, WRIGHT J A. Self-adaptive fitness formulation forconstrained optimization [J]. IEEE Transactions on EvolutionaryComputation, 2003(7): 445-455.[14]HOMAIFAR A, QI C X, LAI S H. Constrained optimization via genetic algorithms [J]. Simulation, 1994, 62(4): 242-254.[15]COELLO A C. Theoretical and numerical constraint-handling techniquesused with evolutionary algorithms: A survey of the art [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191: 1245-1289. |