[ 1 ] AGARWAL R P, BOHNER M, LI W T. Nonoscillation and Oscillation: Theory for Functional Differential
Equations [M]. New York: Marcel Dekker, 2004.
[ 2 ] BACUL´IKOV´A B, D ? ZURINA J. Oscillation theorems for second order neutral differential equations [J]. Comput
Math Appl, 2011, 61: 94-99.
[ 3 ] HASANBULLI M, ROGOVCHENKO YU V. Oscillation criteria for second order nonlinear neutral differential
equations [J], Appl Math Comput, 2010, 215: 4392-4399.
[ 4 ] LI T, AGARWAL R P, BOHNER M. Some oscillation results for second-order neutral differential equations [J].
J Indian Math Soc, 2012, 79: 97-106.
[ 5 ] LI T, AGARWAL R P, BOHNER M. Some oscillation results for second-order neutral dynamic equations [J].
Hacet J Math Stat, 2012, 41: 715-721.
[ 6 ] LI T X, HAN Z L, ZHANG C H, et al. Oscillation criteria for second-order superlinear neutral differential
equations [J]. Abstr Appl Anal, 2011 (1): 1-17.
[ 7 ] LI T X, HAN Z L, ZHANG C H, et al. On the oscillation of second-order Emden-Fowler neutral differential
equations [J]. J Appl Math Computing, 2011, 37: 601-610.
[ 8 ] LI T X, ROGOVCHENKO Y V, ZHANG C H. Oscillation of second-order neutral differential equations [J].
Funkc Ekvac, 2013, 56: 111-120.
[ 9 ] LIN X, TANG X. Oscillation of solutions of neutral differential equations with a superlinear neutral term [J].
Appl Math Lett, 2007, 20: 1016-1022.
[10] HAN Z L, LI T X, SUN S R, et al. Remarks on the paper [Appl. Math. Comput. 207 (2009) 388-396] [J]. Appl
Math Comput, 2010, 215(11): 3998-4007.
[11] LI T X, ROGOVCHENKO Y V. Oscillation theorems for second-order nonlinear neutral delay differential equa-
tions [J]. Abstract and Applied Analysis, 2014, 2014: 1-6.
[12] SUN S, LI T X, HAN Z L, et al. Oscillation theorems for second-order quasilinear neutral functional differential
equations [J]. Abstract and Applied Analysis, 2012, 2012: 1-17.
[13] ZHANG C H, AGARWAL R P, BOHNER M, et al. New oscillation results for second-order neutral delay dynamic
equations [J]. Advances in Difference Equations, 2012, 2012: 227.
[14] AGARWAL R P, BOHNER M, LI T X, et al. A new approach in the study of oscillatory behavior of even-order
neutral delay differential equations [J]. Appl Math Comput, 2013, 225: 787-794.
[15] YANG J S, QIN X W. Oscillation criteria for certain second-order Emden-Fowler delay functional dynamic
equations with damping on time scales [J]. Advances in Difference Equations, 2015, 2015: 97.
[16] AGARWAL R P, BOHNER M, LI T X, et al. Oscillation of second-order Emden-Fowler neutral delay differential
equations [J]. Annali di Matematica Pura ed Applicata, 2014, 193(6): 1861-1875.
[17] AGARWAL R P, BOHNER M, LI T X, et al. Oscillation of second-order differential equations with a sublinear
neutral term [J]. Carpathian Journal of Mathematics, 2014, 30(1): 1-6.
[18] 杨甲山, 黄劲. 时间模上一类二阶非线性动态方程振荡性的新准则~[J]. 华东师范大学学报 (自然科学版), 2015, 2015(3): 9-15.
[19] 杨甲山, 孙文兵. 一类多时滞二阶中立型微分方程的振动性~[J]. 中北大学学报 (自然科学版), 2012, 33(4): 363-368.
[20] 杨甲山, 方彬. 一类二阶中立型微分方程的振动和非振动准则~[J]. 四川师范大学学报 (自然科学版), 2012, 35(6): 776-780.
[21] 杨甲山, 方彬. 一类二阶中立型微分方程的振动性~[J]. 数学的实践与认识, 2013, 43(23): 193-197.
[22] 杨甲山, 覃学文. 具阻尼项的高阶\,Emden-Fowler\,型泛函微分方程的振荡性~[J]. 中山大学学报 (自然科学版), 2015, 54(4): 63-68.
[23] 杨甲山. 具正负系数和阻尼项的高阶泛函微分方程的振动性~[J]. 华东师范大学学报 (自然科学版), 2014(6): 25-34.
|