[ 1 ] VAN DAM E R, HAEMERS W H. Which graphs are determined by their spectrum[J]. Linear Algebra Appl,2003, 373: 241-272.
[ 2 ] HAEMERS W H, SPENCE E. Enumeration of cospectral graphs[J]. Eur J Combin, 2004, 25: 199-211.
[ 3 ] BU C, ZHOU J. Signless Laplacian spectral characterization of the cones over some regular graphs[J]. Linear Algebra Appl, 2012, 436: 3634-3641.
[ 4 ] XU L, HE C. On the signless Laplacian spectral determination of the join of regular graphs[J]. Discrete Math, Algorithms and Appl, 2014, 6(4): 1450050.
[ 5 ] WANG J, ZHAO H. Spectral characterization of multicone graphs[J]. Czechoslovak Math J, 2012, 62(137): 117-126.
[ 6 ] WANG J, HUANG Q, BELARDO F, et al. On the spectral characterizations of ]-graphs[J]. Discrete Math, 2010, 310: 1845-1855.
[ 7 ] ZHANG Y, LIU X, ZHANG B, et al. The lollipop graph is determined by its Q-spectrum[J], Discrete Math, 2009, 309: 3364-3369.
[ 8 ] DAS K C. On conjectures involving second largest signless Laplacian eigenvalue of graphs[J]. Linear Algebra Appl, 2010, 432: 3018-3029.
[ 9 ] CVETKOVIC D, ROWLINSON P, SIMIC S. An Introduction to the Theory of Graph Spectra[M]. Cambridge: Cambridge University Press, 2010.
[10] CVETKOVIC D, SIMIC S. Towards a spectral theory of graphs based on signless Laplacian, II[J]. Linear Algebra Appl, 2010, 432(9): 2257-2272.
[11] DE FREITAS M A A, DE ABREU N M M, DEL-VECCHIO R R, et al. Infinite families of Q-integral graphs[J]. Linear Algebra Appl, 2010, 432(9): 2352-2360. |