[ 1 ] RAO C R. Linear Statistical Inference and Its Applications[M]. New York: Wiley, 1973.
[ 2 ] ?陈敏, 韦来生. 线性模型中回归系数的可估函数和误差方差的同时Bayes估计的优良性[J]. 应用数学学报, 2014, 37(5): 865-877.
[ 3 ] 王松桂, 史建红, 尹素菊, 等. 线性模型引论[M]. 北京: 科学出版社, 2004.
[ 4 ] BOX G E P, TIAO G C. Bayesian Inference in Statistical Analysis[M]. Massachusetts: Addison-Wesley, 1973.
[ 5 ] XU K, HE D J. The superiority of Bayes estimators in a multivariate linear model with respect to normal-inverse Wishart prior[J]. Acta Mathematicae Applicatae Sinica, English Series, 2015, 31(6): 1003-1014.
[ 6 ] ZHANG W P, WEI L S, CHEN Y. The superioritities of Bayes linear unbiased estimator in multivariate linear models[J]. Acta Mathematicae Applicatae Sinica, English Series, 2012, 28(2): 383-394.
[ 7 ] ANDERSON T W. An Introduction to Multivariate Statistical Analysis[M]. New Jersey: John Wiley and Sons,2003.
[ 8 ] 许凯, 何道江, 徐兴忠. 正态--逆Wishart先验下多元线性模型中经验Bayes估计的优良性[J]. 数学年刊, 2014, 35A(3): 267-284.
[ 9 ] ZHANG X D. Matrix Analysis and Application[M]. Beijing: Tsinghua University Press, 2004.
[10] LIU J S. An Introduction to Wishart Distributions[M]. Beijing: Science Press, 2005.
[11] PITMAN E J G. The closest estimates of statistical parameters[J]. Proc Camb Phil Soc, 1937, 33: 212-222.
[12] RAO C R. Some comments on the minimum mean square as criterion of estimation statistics and related topics[M]//Statistics and Related Topics. Amsterdam: North-Holland Publishing Co, 1981: 123-143.
[13] RAO C R, KEATING J P, MASON R L. The Pitman nearness criterion and determination[J]. Communications in Statistics–Theory and Methods, 1986, 15: 3173-3191.
[14] KEATING J P, MASON R L, SEN P K. Pitman’s measure of closeness: A comparison of statistical estimators[M]//Society for Industrial and Applied Mathematics. Philadelphia: [s.n.], 1993: 571-581.
[15] WEI L S, ZHANG W P. The superiorities of Bayes linear minimun risk estimation in linear mode[J]. Communications in Statistics-Theory and Methods, 2007, 36: 917-926.
[16] 陈玲, 韦来生. 线性模型中回归系数和误差方差的同时\,Bayes\,估计的优良性[J]. 数学年刊, 2011, 32A(6): 763-774. |