[1] 文志英. 分形几何的数学基础 [M]. 上海:上海科技教育出版社, 2000.
[2] LI Y Z, WU M, XI L F. Quasisymmetric minimality on packing dimension for Moran sets[J]. J Math Anal Appl, 2013, 408(1):324-334.
[3] KOVALEV L V. Conformal dimension does not assume values between zero and one[J]. Duke Math J, 2006, 134(1):1-13.
[4] TYSON J T. Sets of minimal Hausdorff dimension for quasiconformal mappings[J]. Proc Amer Math Soc, 2000, 128:3361-3367.
[5] GEHRING F W, VAISALA J. Hausdorff dimension and quasiconformal mappings[J]. J Lond Math Soc, 1973, 6:504-512.
[6] GEHRING F W. The Lp-integrability of the partial derivatives of a quasiconformal mapping[J]. Acta Math, 1973, 130:265-277.
[7] TUKIA P. Hausdorff dimension and quasisymmetric mappings[J]. Math Scand, 1989, 65(1):152-160.
[8] STAPLES S G, WARD L A. Quasisymmetrically thick sets[J]. Ann Acad Sci Fenn Math, 1998, 23:151-168.
[9] HAKOBYAN H. Cantor sets which are minimal for quasisymmetric maps[J]. J Contemp Math Anal, 2006, 41(2):5-13.
[10] HU M D, WEN S Y. Quasisymmetrically minimal uniform Cantor sets[J]. Topology Appl, 2008, 155(6):515-521.
[11] DAI Y X, WEN Z X, XI L F, et al. Quasisymmetrically minimal Moran sets and Hausdorff dimension[J]. Ann Acad Sci Fenn Math, 2011, 36:139-151.
[12] WANG W, WEN S Y. Qn quasisymmetric minimality of Cantor sets[J]. Topology Appl, 2014, 178:300-314.
[13] WANG X Y, WU J. Packing dimensions of homogeneous perfect sets[J]. Acta Math Hungar, 2007, 118(12):29-39.
[14] FALCONER K. Techniques in Fractal Geometry[M]. Chichester:John Wiley & Sons Ltd, 1997.
[15] WU J M. Null sets for doubling and dyadic doubling measures[J]. Ann Acad Sci Fenn Math, 1993, 18(1):77-91. |