[1] DE JAGER E M, JIANG F R. The Theory of Singular Perturbation[M]. Amsterdam: North-Holland Publishing Co, 1996. [2] BARBU L, MOROSANU G. Singularly Perturbed Boundary-Value Problems[M]. Basel: Birkhauser, 2007. [3] CHANG KW, HOWES F A. Nonlinear Singular Perturbation Phenomena: Theory and Applications [M]. Applied Mathematical Science, 56, New York: Springer-Verlag, 1984. [4] SAMUSENKO P F. Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations [J]. J Math Sci, 2013, 189 (5): 834-847. [5] MARTINEZ S, WOLANSKI N. A singular perturbation problem for a quasi-linear operator satisfying the natural condition of Lieberman [J]. SIAM J Math Anal, 2009, 41(1): 318-359. [6] KELLOGG R B, KOPTEVA N A. Singularly perturbed semilinear reaction-diffusion problem in a polygonal domain[J]. J Differ Equations, 2010, 248(1): 184-208. [7] TIAN C R, ZHU P. Existence and asymptotic behavior of solutions for quasilinear parabolic systems [J]. Acta Appl Math, 2012, 121(1): 157-173. [8] SKRYNNIKOV Y. Solving initial value problem by matching asymptotic expansions[J]. SIAM J Appl Math, 2012, 72(1): 405-416. [9] KELLY W G. A singular perturbation problem of Carrier and Pearson[J]. J Math Anal Appl, 2001, 255: 678-697. [10] MIZOGUCHI N, YANAGIDA E. Life span of solutions for a semilinear parabolic problem with small diffusion[J]. J Math Anal Appl, 2001, 261: 350-368. [11] MO J Q. Singular perturbation for a boundary value problem of fourth order nonlinear differential equation [J]. Chin Ann Math B, 1987(1): 80-88. [12] MO J Q. Singular perturbation for a class of nonlinear reaction diffusion systems[J]. Science in China, 1989, 32: 1306-1315. [13] MO J Q. A singularly perturbed nonlinear boundary value problem [J]. J Math Ana1 Appl, 1993, 178: 289-293. [14] MO J Q. Homotopic mapping solving method for gain fluency of a laser pulse amplifier [J]. Science in China G, 2009, 52(7): 1007-1010. [15] FENG Y H, LIU S D. Spike layer solutions of some quadratic singular perturbation problems with high-order turning points [J]. Math Appl, 2014, 27(1): 50-55. [16] 冯依虎, 石兰芳, 汪维刚, 等. 一类广义非线性强阻尼扰动发展方程的行波解[J]. 应用数学和力学, 2015, 36(3): 315-324. [17] 冯依虎, 石兰芳, 汪维刚, 等. 一类大气尘埃等离子体扩散模型研究[J]. 应用数学和力学, 2015, 36(6): 639-650. |