[1] LEACH P G L, MOYO S, COTSAKIS S, et al. Symmetry, singularities and integrability in complex dynamics Ⅲ: Approximate symmetries and invariants [J]. Journal of Nonlinear Mathematical Physics, 2001, 8(1): 139-156. [2] GOVINDER K S, HEIL T G, UZER T. Approximate Noether symmetries [J]. Physics Letters A, 1998, 240(3): 127-131. [3] NAEEM I, MAHOMED F M. Approximate first integrals for a system of two coupled van der Pol oscillators with linear diffusive coupling[J]. Mathematical and Computational Applications, 2010, 15(4): 720-731. [4] UNAL G. Approximate generalized symmetries, normal forms and approximate first integrals [J]. Physics Letters A, 2000, 266(2): 106-122. [5] DOLAPIC I T, PAKDEMIRLI M. Approximate symmetries of creeping flow equations of a second grade fluid [J]. International Journal of Non-linear Mechanics, 2004, 39(10): 1603-1619. [6] KARA A H, MAHOMED F M, QADIR A. Approximate symmetries and conservation laws of the geodesic equations for the Schwarzschild metric [J]. Nonlinear Dynamics, 2008, 51(1/2): 183-188. [7] GREBENEV V N, OBERLACK M. Approximate Lie symmetries of the Navier-Stokes equations [J]. Journal of Non-linear Mathematical Physics, 2007, 14(2): 157-163. [8] JOHNPILLAI A G, KARA A H, MAHOMED F M. Approximate Noether-typesymmetries and conservation laws via partial Lagrangians for PDEs with a small parameter [J]. Journal of Computational and Applied Mathematics, 2009, 223(1): 508-518. [9] ZHANG Z Y, YONG X L, CHEN Y F. A new method to obtain approximate symmetry of nonlinear evolution equation form perturbations [J]. Chinese Physics B, 2009, 18(7): 2629-2633. [10] 楼智美. 两自由度弱非线性耦合系统的一阶近似Lie对称性与近似守恒量[J]. 物理学报, 2013, 62(22): 220202. [11] 楼智美, 梅凤翔, 陈子栋. 弱非线性耦合二维各向异性谐振子的一阶近似Lie对称性与近似守恒量[J]. 物理学报, 2012, 61(11): 110204. [12] 楼智美. 微扰Kepler系统轨道微分方程的近似Lie对称性与近似不变量[J]. 物理学报, 2010, 59(10): 6764-6769. [13] 楼智美. 含非线性微扰项的二阶动力学系统的一阶近似守恒量的一种新求法[J]. 物理学报, 2014, 63(6): 060202. [14] 梅凤翔. 李群和李代数对约束力学系统的应用[M]. 北京: 科学出版社, 1999: 120-126. [15] 梅凤翔. 约束力学系统的对称性与守恒量[M]. 北京: 北京理工大学出版社, 2004: 10-14. [16] 楼智美. 用Noether定理确定各向同性谐振子的守恒量[J]. 力学与实践2003, 25(1): 72-73. |