[1] 许海玲, 吴潇, 李晓东. 互联网推荐系统比较研究[J]. 软件学报, 2009, 20(2):350-362. [2] 张锋, 常会友. 使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J]. 计算机研究与发展, 2006, 43(4):667-672. [3] 王辉, 高利军, 王听忠. 个性化服务中基于用户聚类的协同过滤推荐[J]. 计算机应用, 2007, 27(5):1225-1227. [4] ZIEGLER C N, MCNEE S, KONSTAN J, et al. Improving recommendation lists through topic diversification[C]//Proceedings of the 14th International World Wide Web Conference. 2005:22-32. [5] 陈曦, 成韵姿. 一种优化组合相似度的协同过滤推荐算法[J]. 计算机工程与科学, 2017, 39(1):180-187. [6] 郭彩云, 王会进. 改进的基于标签的协同过滤算法[J]. 计算机工程与应用, 2016, 52(8):56-61. [7] 宋伟伟, 杨德刚, 郑敏. 基于时间加权标签的协同过滤推荐算法研究[J]. 重庆师范大学学报(自然科学版), 2016, 33(5):113-120. [8] 孙楠军, 刘天时. 基于项目分类和用户群体兴趣的协同过滤算法[J]. 计算机工程与应用, 2015, 51(10):128-131. [9] LEMIRE D, MACLACHLAN A. Slope one predictors for online rating-based collaborative filtering[C]//Proceedings of the SIAM Data Mining (SDM'05). 2005:21-23. [10] LIU F, LEE H J. Use of social network information to enhance collaborative filtering performance[J]. Expert Systems with Applications, 2010, 37(7):4772-4778. [11] YUAN W, GUAN D, LEE Y, et al. Improved trust-aware recommender system using small worldness of trust networks[J]. Knowledge Based Systems, 2010, 23(3):232-238. [12] DING L, STEIL D, DIXON B, et al. A relation context oriented approach to identify strong ties in social networks[J]. Knowledge-Based Systems, 2011, 24(8):1187-1195. [13] 邓晓懿, 金淳, 韩庆平, 等. 基于情境聚类和用户评级的协同过滤推荐模型[J]. 系统工程理论与实践, 2013, 33(11):2945-2953. [14] MA H, KING I, LYU M R. Effective missing data prediction for collaborative filtering[C]//Sigir Proceedings of Annual International ACM Sigir Conference on Research & Development 2007:39-46. [15] LI Y M, LAI C Y, CHEN C W. Discovering influencers for marketing in the blogosphere[J]. Information Sciences, 2011, 181(23):5143-5157. [16] YUAN W W, GUAN D H, LEE Y K, et al. Improved trust-aware recommender system using small-worldness of trust networks[J]. Knowledge Based Systems, 2010, 23(3):232-238. [17] ARASU A, CHO J, GARCIA-MOLINA H, et al. Searching the Web[J]. ACM Transactions on Internet Technology, 2001(1):2-43. |