[1] HE Y Z. Ba spaces and Orlicz space[J]. Function Spaces and Complex Analysis, 1997, 2:37-62.
[2] 韩领兄, 吴嘎日迪, 刘国锋. Orlicz空间中加权光滑模与K-泛函的等价性及其应用[J]. 数学物理学报, 2014, 34A(1):95-108.
[3] 韩领兄, 吴嘎日迪. Gamma算子在Orlicz空间Lφ*(0, ∞)中加Jacobi权同时逼近的强逆不等式[J]. 高校应用数学学报, 2016, 31A(3):366-378.
[4] MÜLLER M W. Die Folge der Gammaoperatoren[D]. Stuttgart:Stu ttgart University, 1967.
[5] LUPAS A, MACHE D H, MÜLLER M W. Weighted Lp-approximation of derivatives by the method of Gammaoperators[J]. Results Math, 1995, 28:277-286.
[6] LUPAS A, MACHE D H, MAIER V, et al. Linear combinations of gamma operators in Lp-spaces[J]. Results Math, 1998, 34:156-168.
[7] LUPAS A, MÜLLER M W. Approximationseigenschaften der Gammaoperator en[J]. Math Z, 1967, 98:208-226.
[8] MÜLLER M W. Punktweise und gleichmaßige Approximation durc h Gammaoperatoren[J]. Math Z, 1968, 103:
[9] MÜLLER M W. Einige Approximationseigenschaften der Gammaop eratoren[J]. Mathematica, 1968, 10(33):303-310.
[10] TOTIK V. The gammaoperators in Lp-spaces[J]. Publ Math Debrecen, 1985, 32:43-55.
[11] DITZIAN Z, TOTIK V. Moduli of Smoothness[M]. New York:Springer-Verlag, 1987.
[12] GUO S S, QI Q L. Pointwise weighted simultaneous approximation by Gamma operators[J]. J Nanjing University Mathematical Biquarterly, 2003, 20(1):24-37.
[13] 齐秋兰, 郭顺生, 黄苏霞. Gamma算子在Lp(1 ≤ p ≤ ∞)空间带权同时逼近的强逆不等式[J]. 数学物理学报, 2008, 28A(3):537-545.
[14] SABLONNIÈRE P. Representation of quasi interplants as differential operators and applications[J]. International Series of Numerical Mathematics, 1999, 132:233-252.
[15] MÜLLER M W. The central approximation theorems for the method of left Gamma quasi-interpolants in L p spaces[J]. Journal of Computational Analysis and Applicactions, 2001, 3(3):207-222.
[16] 韩领兄, 吴嘎日迪. Bernstein Durrmeyer算子拟中插式在Orlicz空间中的逼近[J]. 数学杂志, 2017, 37(3):488-496. 227-238. |