[1] AGGARWAL C C, REDDY C K. Data Clustering:Algorithms and Applications[M]. Raton:Chapman & Hall/CRC, 2013.
[2] VISWANATH P, PINKESH R. l-DBSCAN:A fast hybrid density based clustering method[C]//Proceedings of the 18th International Conference on Pattern Recognition. NJ:IEEE, 2006:912-915.
[3] PEIZHUANG W. Pattern recognition with fuzzy objective function algorithms (James C. Bezdek)[J]. SIAM Review, 1983, 25(3):442-442.
[4] MALINEN M I, FRÄNTI P. Balanced k-means for clustering[C]//Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR). Berlin:Springer, 2014:32-41.
[5] LIU H, HAN J, NIE F, et al. Balanced clustering with least square regression[C]//Proceedings of the 31th AAAI Conference on Artificial Intelligence. CA:AAAI, 2017:2231-2237.
[6] BRADLEY P S, BENNETT K P, DEMIRIZ A. Constrained k-means clustering[J]. Microsoft Research Redmond, 2000, 59(1):1-34.
[7] KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics, 2005, 52(1):7-21.
[8] WU B, ZHOU Y, YUAN P, et al. Semstore:A semantic-preserving distributed rdf triple store[C]//Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. NY:ACM, 2014:509-518.
[9] BANERJEE A, GHOSH J. On scaling up balanced clustering algorithms[C]//Proceedings of the 2002 SIAM International Conference on Data Mining. PA:Society for Industrial and Applied Mathematics, 2002:333-349.
[10] BANERJEE A, GHOSH J. Frequency-sensitive competitive learning for scalable balanced clustering on highdimensional hyperspheres[J]. IEEE Transactions on Neural Networks, 2004, 15(3):702-719.
[11] NG A Y, JORDAN M I, WEISS Y. On spectral clustering:Analysis and an algorithm[C]//Proceedings of the neural information processing systems. Massachusetts:MIT Press, 2002:849-856.
[12] CAI D, HE X, HAN J. Document clustering using locality preserving indexing[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(12):1624-1637.
[13] STREHL A, CHOSH J. Knowledge reuse framework for combining multiple partitions[J]. Journal of Machine learning Research, 2002, 33(3):583-617. |