[1] World Health Organization. Number of deaths due to HIV[EB/OL].[2017-08-01]. http://www.who.int/gho/hiv/epidemicstatus/deaths/en/.
[2] World Health Organization. How many TB cases and deaths are there?[EB/OL].[2017-08-01]. http://www.who.int/gho/tb/epidemic/casesdeaths/en/.
[3] KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London, 1927, 115:700-721.
[4] HETHCOTE H W, YORKE J A. Gonorrhea Transmission Dynamics and Control[M]. Berlin:Springer-Verlag, 1984.
[5] GRAY A, GREENHALGH D, HU L, et al. A stochastic differential equations SIS epidemic model[J]. Siam Journal on Applied Mathematics, 2011, 71(3):876-902.
[6] RICHARDSON L F. Variation of the frequency of fatal quarrels with magnitude[J]. Journal of the American Statistical Association, 1948, 43(244):523-546.
[7] BROCKMANN D, HUFNAGEL L, GEISEL T. The scaling laws of human travel[J]. Nature, 2006, 439:462-465.
[8] NOLAN J P. Stable Distributions-Models for Heavy Tailed Data[M]. Boston:Birkhauser, 2009.
[9] MAO X. Exponential Stability of Stochastic Differential Equations[M]. New York:Marcel Dekker, 1994.
[10] BAO J, MAO X, YIN G G, et al. Competitive Lotka-Volterra population dynamics with jumps[J]. Nonlinear Analysis Theory Methods and Applications, 2011, 74(17):6601-6616.
[11] APPLEBAUM D. Lévy Processes and Stochastic Calculus[M] 2nd ed. Cambridge:Cambridge University Press, 2009:251.
[12] KLEBANER F C. Introduction to Stochastic Calculus with Applications[M]. 2nd ed. Melbourne:Monash University Press, 2004:170.
[13] KHASMINSKⅡ R. Stochastic Stability of Differential Equations[M]. Berlin:Springer, 2011:107.
[14] ZHANG Z, ZHANG X, TONG, J. Exponential ergodicity for population dynamics driven by α-stable processes[J]. Statistics and Probability Letters, 2017, 125:149-159.
[15] CHEN X, CHEN Z, TRAN K, et al. Properties of switching jump diffusions:Maximum principles and Harnack inequalities[J]. Bernoulli, preprint, 2018.
[16] CHEN X S, CHEN Z Q, TRAN K, et al. Recurrence and ergodicity for a class of regime-switching jump diffusions[J]. Applied Mathematics and Optimization, 2017(6):1-31.
[17] 沈燮昌. 数学分析2[M]. 北京:高等教育出版社, 2014.
[18] MEYN S P, TWEEDIE R L. Stability of Markovian processes Ⅲ:Foster-Lyapunov criteria for continuous-time processes[J]. Advances in Applied Probability, 2010, 25(3):518-548.
[19] LIPSTER R SH, A strong law of large numbers for local martingales[J]. Stochastics, 1980, 3:217-228. |