1 |
LORD RAYLEIGH O M F R S. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, The problem of the whispering gallery. 1910, 20 (120): 1001- 1004.
|
2 |
MIE G. Annalen der Physik, Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. 1908, 330 (3): 377- 445.
|
3 |
RICHTMYER R D. Journal of Applied Physics, Dielectric resonators. 1939, 10 (6): 391- 398.
|
4 |
GARRETT C G B, KAISER W, BOND W L. Physical Review, Stimulated emission into optical whispering modes of spheres. 1961, 124 (6): 1807- 1809.
|
5 |
WALSH P, KEMENY G. Journal of Applied Physics, Laser operation without spikes in a ruby ring. 1963, 34 (4): 956- 957.
|
6 |
MCCALL S L, LEVI A F J, SLUSHER R E, et al. Applied Physics Letters, Whispering-gallery mode microdisk lasers. 1992, 60 (3): 289- 291.
|
7 |
SLUSHER R E, LEVI A F J, MOHIDEEN U, et al. Applied Physics Letters, Threshold characteristics of semiconductor microdisk lasers. 1993, 63 (10): 1310- 1312.
|
8 |
LEVI A F J, SLUSHER R E, MCCALL S L, et al. Applied Physics Letters, Directional light coupling from microdisk lasers. 1993, 62 (6): 561- 563.
|
9 |
XIA F N, SEKARIC L, VLASOV Y. Nature Photonics, Ultracompact optical buffers on a silicon chip. 2007, (1): 65- 71.
|
10 |
YANIK M F, FAN S H. Physical Review Letters, Stopping light all optically. 2004, 92 (8): 083901.
|
11 |
DONG C H, HE L, XIAO Y F, et al. Applied Physics Letters, Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing . 2009, 94 (23): 839- 842.
|
12 |
VOLLMER F, ARNOLD S. Nature Methods, Whispering-gallery-mode biosensing: Label-free detection down to single molecules. 2008, 5 (7): 591- 596.
|
13 |
VOLLMER F, BRAUN D, LIBCHABER A, et al. Applied Physics Letters, Protein detection by optical shift of a resonant microcavity. 2002, 80 (21): 4057- 4059.
|
14 |
KIPPENBERG T J, ROKHSARI H, CARMON T, et al. Physical Review Letters, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. 2005, 95 (3): 033901.
|
15 |
MA R, SCHLIESSER A, DEL’HAYE P, et al. Optics Letters, Radiation-pressure-driven vibrational modes in ultra-high-Q silica microspheres . 2007, 32 (15): 2200- 2202.
|
16 |
KIPPENBERG T J, VAHALA K J. Science, Cavity optomechanics: Back-action at the mesoscale. 2008, 321 (5893): 1172- 1176.
|
17 |
SCHLIESSER A, KIPPENBERG T J. Advances in Atomic, Molecular, and Optical Physics, Cavity optomechanics with whispering-gallery-mode optical micro-resonators. 2010, 58, 207- 323.
|
18 |
BRAGINSKY V B, GORODETSKY M L, ILCHENKO V S. Physics Letters A, Quality-factor and nonlinear properties of optical whispering-gallery modes. 1989, 137 (7/8): 393- 397.
|
19 |
HONDA K, GARMIRE E, WILSON K. Journal of Lightwave Technology, Characteristics of an integrated optics ring resonator fabricated in glass. 1984, 2 (5): 714- 719.
|
20 |
ARMANI D K, KIPPENBERG T J, SPILLANE S M, et al. Nature, Ultra-high-Q toroid microcavity on a chip . 2003, 421 (6926): 925- 928.
|
21 |
MOON H J, CHOUGH Y T, AN K. Physical Review Letters, Cylindrical microcavity laser based on the evanescent-wave-coupled gain. 2000, 85 (15): 3161- 3164.
|
22 |
COLLOT L, LEFÈVRE-SEGUIN V, BRUNE M, et al. Europhysics Letters, Very high-Q whispering-gallery mode resonances observed on fused silica microspheres . 2007, 23 (5): 327- 334.
|
23 |
ILCHENKO V S, SAVCHENKOV A A, MATSKO A B, et al. Physical Review Letters, Nonlinear optics and crystalline whispering gallery mode cavities. 2004, 92 (4): 043903.
|
24 |
SAVCHENKOV A A, ILCHENKO V S, MATSKO A B, et al. Physical Review A, Kilohertz optical resonances in dielectric crystal cavities. 2004, 70 (5): 051804.
|
25 |
LI B B, WANG Q Y, YUN F X, et al. Applied Physics Letteres, On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator . 2010, 96 (25): 251109.
|
26 |
ZENINARI V, KAPITANOV V A, COURTOIS D, et al. Infrared Physics and Technology, Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection. 1999, 40 (1): 1- 23.
|
27 |
FANG N, XI D J, XU J Y, et al. Nature Materials, Ultrasonic metamaterials with negative modulus. 2006, 5 (6): 452- 456.
|
28 |
LEE S H, PARK C M, SEO Y M, et al. Physical Review Letters, Composite acoustic medium with simultaneously negative density and modulus. 2010, 104 (5): 054301.
|
29 |
SENIOR T B A. IEEE Transactions on Electromagnetic Compatibility, Electromagnetic field penetration into a cylindrical cavity. 1976, EMC-18 (2): 71- 73.
|
30 |
BONBARDT J N JR , LIBELO L F. The Scattering of electromagnetic radiation by apertures’ Ⅴ. Surface current, tangential aperture electric field, and back-scattering cross-section for the axially slotted cylinder at normal, symmetric incidence[R]. NASA STI/Recon Technical Report N, 1975.
|
31 |
NEGANOV V A, SARYCHEV A A. Journal of Communications Technology and Electronics, Diffraction of a plane electromagnetic wave by a circulardielectric cylinder with a finite-length perfectly conducting metal strip on the cylinder's lateral surface. 2008, 53 (11): 1315- 1322.
|
32 |
ZIOLKOWSKI R W, GRANT J B. IEEE Transactions on Antennas and Propagation, Scattering from cavity-backed apertures: The generalized dual series solution of the concentrically loadedE-pol slit cylinder problem. 1987, 35 (5): 504- 528.
|
33 |
JOHNSON W A, ZIOLKOWSKI R W. Radio Science, The scattering of an H-polarized plane wave from an axially slotted infinite cylinder: A dual series approach. 1984, 19 (1): 275- 291.
|