1 |
HE Y, ZHU Y S, CHEN J H, et al. Assessment of land occupation of municipal wastewater treatment plants in China. Environmental Science: Water Research & Technology, 2018, (4): 1988- 1996.
|
2 |
吴悦颖, 王洪臣, 孙娟, 等. 我国城镇污水处理设施脱氮除磷能力现状分析及对策建议. 给水排水, 2014, 50 (S1): 118- 122.
|
3 |
LU X Y, HE Y, ZHANG L, et al. Nationwide assessment of sludge production of wastewater treatment plants in China. Environmental Engineering Science, 2019, 36, 249- 256.
doi: 10.1089/ees.2018.0299
|
4 |
LI Z, ZHENG T, LI M, et al. Organic contaminants in the effluent of Chinese wastewater treatment plants. Environment Science Pollution Research, 2018, 25, 26852- 26860.
doi: 10.1007/s11356-018-2840-2
|
5 |
周国标, 周鹏飞, 雷睿, 等. 传统A2/O城市污水处理中存在的工艺问题及其优化控制策略 . 水处理技术, 2017, 43 (6): 11- 17.
|
6 |
Al-SHAREKH H A, HAMODA M F. Removal of organics from wastewater using a novel biological hybrid system. Water Science and Technology, 2001, 43, 321- 326.
|
7 |
ANDREOTTOLA G, FOLADORI P, RAGAZZI M, et al. Dairy wastewater treatment in a moving bed biofilm reactor. Water Science and Technology, 2002, 45 (12): 321- 328.
doi: 10.2166/wst.2002.0441
|
8 |
SRIWIRIYARAT T, RANDALL C W. Performance of IFAS wastewater treatment processes for biological phosphorus removal. Water Research, 2005, 39 (16): 3873- 3884.
doi: 10.1016/j.watres.2005.07.025
|
9 |
MALPEI F, BONOMO L, ROZZI A. Feasibility study to upgrade a textile wastewater treatment plant by a hollow fibre membrane bioreactor for effluent reuse. Water Science and Technology, 2003, 47 (10): 33- 39.
doi: 10.2166/wst.2003.0531
|
10 |
TANNER C C, SUKIAS J P S. Linking pond and wetland treatment: Performance of domestic and farm systems in New Zealand. Water Science and Technology, 2003, 48 (2): 331- 339.
doi: 10.2166/wst.2003.0138
|
11 |
MELICZ Z. Partial nitrification in a high-load activated sludge system by biofilter backwash water recirculation. Water Science and Technology, 2003, 47 (11): 93- 99.
doi: 10.2166/wst.2003.0591
|
12 |
JOBBAGY A, TARDY G M, LITERATHY B. Enhanced nitrogen removals in the combined activated sludge-biofilter system of the Southpest Wastewater Treatment Plant. Water Science and Technology, 2002, 50 (7): 1- 8.
|
13 |
国家环境保护总局. GB 18918—2002, 城镇污水处理厂污染物排放标准 [S]. 北京: 中国环境出版社, 2003.
|
14 |
江苏省生态环境厅. 关于发布《太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值》的通知 [Z]. 2018-05-18.
|
15 |
浙江省生态环境厅. 城镇污水处理厂主要水污染物排放标准(DB 33/2169—2018) [Z]. 2018-12-17.
|
16 |
安徽省生态环境厅. 巢湖流域城镇污水处理厂和工业行业主要水污染物排放限值(DB 34/2710—2016)(皖环发〔2016〕56号) [Z]. 2016-11-04.
|
17 |
昆明市市场监督管理局. 昆明市地方标准发布公告2020年标字第2号 [Z]. 2020-04-17.
|
18 |
ZHANG Q H, YANG W N, NGO H H, et al. Current status of urban wastewater treatment plants in China. Environment International, 2016, 92/93, 11- 22.
doi: 10.1016/j.envint.2016.03.024
|
19 |
HE Y, ZHU Y S, CHEN J H, et al. Assessment of energy consumption of municipal wastewater treatment plants in China. Journal of Cleaner Production, 2019, 228, 399- 404.
doi: 10.1016/j.jclepro.2019.04.320
|
20 |
JIA L X, GOU E F, LIU H, et al. Exploring utilization of recycled agricultural biomass in constructed wetlands: characterization of the driving force for highrate nitrogen removal. Environmental Science & Technology, 2019, 53 (3): 1258- 1268.
|
21 |
MARQUES R, RIBERA-GUARDIA A, SANTOS J, et al. Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes . Water Research, 2018, 137, 262- 272.
doi: 10.1016/j.watres.2018.03.010
|
22 |
ILIES P, MAVINIC D S. The effect of decreased ambient temperature on the biological nitrification and denitrification of a high ammonia lanfill leachate. Water Research, 2001, 35, 2065- 2072.
doi: 10.1016/S0043-1354(00)00477-2
|
23 |
SUNDARESAN N, PHILIP L. Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures. Water Science and Technology, 2008, 58, 819- 830.
doi: 10.2166/wst.2008.340
|
24 |
路俊玲, 陈慧萍, 肖琳. 低温反硝化菌——施氏假单胞菌N3的筛选及脱氮性能. 环境科学, 2018, 39 (12): 5612- 5619.
|
25 |
YAO S, NI J, MA T, et al. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. Bioresource Technology, 2013, 139, 80- 86.
doi: 10.1016/j.biortech.2013.03.189
|
26 |
马宁, 汪浩, 刘操, 等. 污水厂提标改造中A2/O工艺研究与应用趋势 . 中国给水排水, 2016, 32 (20): 29- 33.
|
27 |
景香顺, 李鑫玮, 张晓红, 等. 低碳源市政污水处理优化运行的研究与工程应用. 给水排水, 2019, 55 (11): 33- 37.
|
28 |
王佳伟, 郑江, 周军, 等. 基于碳源需求的A2/O工艺分段进水研究 . 中国给水排水, 2010, 26 (11): 47- 50.
|
29 |
朱云鹏, 彭永臻, 王继苗, 等. 改良A2/O分段进水工艺用于污水厂升级改造 . 中国给水排水, 2012, 28 (7): 22- 26+31.
doi: 10.3969/j.issn.1000-4602.2012.07.006
|
30 |
沈晓铃, 冯成军. 宜兴市和桥污水处理厂提标及扩建工程设计. 给水排水, 2016, 52 (2): 41- 44.
doi: 10.3969/j.issn.1002-8471.2016.02.008
|
31 |
杨敏, 郭兴芳, 孙永利, 等. 某园区污水处理厂问题诊断与优化运行措施. 给水排水, 2020, 56 (2): 57- 62.
|
32 |
罗玉龙, 李燕敏, 李琳, 等. 污泥水解上清液作为GS系统脱氮除磷碳源研究. 环境科学与技术, 2016, 39 (10): 118- 122.
|
33 |
HUANG Z J, KONG F L, LI Y, et al. Advanced treatment of effluent from municipal wastewater treatment plant by strengthened ecological floating bed. Bioresource Technology, 2020, 309, 123358.
doi: 10.1016/j.biortech.2020.123358
|
34 |
赵薇, 陈男, 刘永杰, 等. 以超声波破解剩余污泥为碳源强化污水脱氮. 环境工程, 2019, 37 (3): 44- 49.
|
35 |
黄胡林, 付新梅, 周正. 秸秆发酵液作污水反硝化脱氮外加碳源的潜能研究. 工业水处理, 2019, 39 (5): 42- 45.
|
36 |
刘加强, 李昂, 李莹, 等. 改良A2/O在城市污水处理厂提标改造中的应用 . 水处理技术, 2018, 44 (12): 137- 140.
|
37 |
李诚, 顾悦, 陈凡阵. 天津某污水厂A2/O工艺提标改造工程实践 . 供水技术, 2019, 13 (1): 43- 45.
doi: 10.3969/j.issn.1673-9353.2019.01.012
|
38 |
唐凯峰, 黄羽, 赵乐军. 强化组合生物脱氮工艺在污水处理厂提标扩建中的应用. 给水排水, 2019, 55 (6): 22- 25.
|
39 |
白华清, 郑爽, 李瑞, 等. 基于A2/O的MBBR工艺污水厂设计及运行效果 . 中国给水排水, 2019, 35 (24): 56- 61.
|
40 |
张雯, 石建会, 周亚旭, 等. 西安市某污水处理厂升级改造工程设计与运行. 给水排水, 2015, 51 (8): 48- 50.
doi: 10.3969/j.issn.1002-8471.2015.08.013
|
41 |
瞿露, 张华伟. 重庆地区A-A2/O工艺污水处理厂提标改造工程实例 . 中国给水排水, 2019, 35 (6): 72- 75+88.
|
42 |
陈秀成. 嘉兴联合污水处理厂提标改造工程设计及经验总结. 中国给水排水, 2020, 36 (4): 47- 52.
|
43 |
高飞亚, 郭庆英, 余浩, 等. 反硝化深床滤池在一级A提标项目中的应用及运行效果. 中国给水排水, 2019, 35 (6): 63- 66.
|
44 |
顾佳华, 赵金辉, 王洋洋, 等. 人工湿地用于城市污水厂尾水深度处理及其脱氮效能强化研究. 现代化工, 2020, 40 (3): 64- 66.
|
45 |
黄霞, 左名景, 薛涛, 等. 膜生物反应器脱氮除磷工艺处理城市污水的工程应用[J]. 膜科学与技术, 2011, 31(3): 223-227.
|