1 |
SILBERSCHATZ A, KORTH H F, SUDARSHAN S. Database Systems Concepts [M]. 5th ed. New York: McGraw-Hill Book Company, 2005.
|
2 |
CHAUDHURI S. An overview of query optimization in relational systems [C]//Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems - PODS ’98. Seattle: ACM Press, 1998: 34–43.
|
3 |
LAN H, BAO Z, PENG Y. A survey on advancing the DBMS query optimizer: Cardinality estimation, cost model, and plan enumeration. Data Science and Engineering, 2021, 6 (1): 86- 101.
doi: 10.1007/s41019-020-00149-7
|
4 |
LEIS V, GUBICHEV A, MIRCHEV A, et al. How good are query optimizers, really?. Proceedings of the VLDB Endowment, 2015, 9 (3): 204- 215.
doi: 10.14778/2850583.2850594
|
5 |
LI J, ZHAO B, ZHANG C. Fuzzing: A survey. Cybersecurity, 2018, 1 (1): 6.
doi: 10.1186/s42400-018-0002-y
|
6 |
MANES V J M, HAN H, HAN C, et al. The art, science, and engineering of fuzzing: A survey [J]. IEEE Transactions on Software Engineering, 2019. DOI: 10.1109/TSE.2019.2946563.
|
7 |
SLUTZ D R. Massive stochastic testing of SQL [C]//Very Large Data Base. 1998: 618-622.
|
8 |
SELTENREICH A, TANG B, MULLENDER S. SQLSmith [CP/OL]. [2021-08-01]. https://github.com/anse1/sqlsmith.
|
9 |
RIGGER M, SU Z. Testing database engines via pivoted query synthesis [C]//14th Symposium on Operating Systems Design and Implementation. 2020: 667-682.
|
10 |
CHEN X, WANG C, CHEUNG A. Testing query execution engines with mutations [C]//Proceedings of the Workshop on Testing Database Systems. Portland Oregon: ACM, 2020: 1–5.
|
11 |
GHIT B, POGGI N, ROSEN J, et al. SparkFuzz: Searching correctness regressions in modern query engines [C]//Proceedings of the Workshop on Testing Database Systems. Portland Oregon: ACM, 2020: 1–6.
|
12 |
ZHONG R, CHEN Y, HU H, et al. SQUIRREL: Testing database management systems with language validity and coverage feedback [C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. Virtual Event USA: ACM, 2020: 955–970.
|
13 |
JUNG J, HU H, ARULRAJ J, et al. APOLLO: Automatic detection and diagnosis of performance regressions in database systems. Proceedings of the VLDB Endowment, 2019, 13 (1): 57- 70.
doi: 10.14778/3357377.3357382
|
14 |
BLAZYTKO T, BISHOP M, ASCHERMANN C, et al. GRIMOIRE: Synthesizing structure while fuzzing [C]//28th Security Symposium (Security 19). 2019: 1985-2002.
|
15 |
ZALEWSKI M. American fuzzy lop (2.52b)[CP/OL]. [2021-08-01]. http://lcamtuf.coredump.cx/afl.
|
16 |
BATI H, GIAKOUMAKIS L, HERBERT S, et al. A genetic approach for random testing of database systems [C]//Proceedings of the 33rd International Conference on Very Large Data Bases. 2007: 1243-1251.
|
17 |
ASCHERMANN C, FRASSETTO T, HOLZ T, et al. NAUTILUS: Fishing for deep bugs with grammars [C]//NDSS. 2019.
|
18 |
PADHYE R, LEMIEUX C, SEN K, et al. Semantic fuzzing with zest [C]//Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 2019: 329-340.
|
19 |
STILLGER M, FREYTAG J C. Testing the quality of a query optimizer. IEEE Data Engineering Bulletin, 1995, 18 (3): 41- 48.
|
20 |
GU Z, SOLIMAN M A, WAAS F M. Testing the accuracy of query optimizers [C]//Proceedings of the Fifth International Workshop on Testing Database Systems. 2012: 1-6.
|
21 |
CHAUDHURI S, NARASAYYA V, RAMAMURTHY R. Exact cardinality query optimization for optimizer testing. Proceedings of the VLDB Endowment, 2009, 2 (1): 994- 1005.
doi: 10.14778/1687627.1687739
|
22 |
TRUMMER I. Exact cardinality query optimization with bounded execution cost [C]//Proceedings of the 2019 International Conference on Management of Data. Amsterdam Netherlands: ACM, 2019: 2–17.
|
23 |
SHIN J H, RUSU F, SUHAN A. Exact selectivity computation for modern in-memory database query optimization [EB/OL]. (2019-01-06)[2021-09-18]. https://arxiv.org/pdf/1901.01488.pdf.
|
24 |
WOLFRAM. Mathematica 12 [CP/OL]. [2021-08-01]. https://www.wolfram.com/mathematica/.
|