1 |
AMBROSETTI A, PRODI G. On the inversion of some differentiable mappings with singularities between Banach spaces. Ann Mat Pura Appl, 1972, 93 (4): 231- 246.
|
2 |
FABRY C, MAWHIN J, NKASHAMA M N. A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull Lond Math Soc, 1986, 18, 173- 180.
doi: 10.1112/blms/18.2.173
|
3 |
MAWHIN J. The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian . J Eur Math Soc, 2006, 8 (2): 375- 388.
|
4 |
BEREANU C, MAWHIN J. Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and ϕ-Laplacian . NoDEA Nonlinear Differ Equ Appl, 2008, 15, 159- 168.
doi: 10.1007/s00030-007-7004-x
|
5 |
SOVRANO E. Ambrosetti-Prodi type result to a Neumann problem via a topological approach. Discrete Contin Dyn Syst Ser S, 2018, 11 (2): 345- 355.
|
6 |
FELTRIN G, SOVRANO E, ZANOLIN F. Periodic solutions to parameter-dependent equations with a ϕ-Laplacian type operator . Nonlinear Differ Equ Appl, 2019, 26 (5): 1- 38.
doi: 10.1007/s00030-019-0585-3
|
7 |
万飞. 水下潜器航行仿真系统中深海流体的模拟 [D]. 辽宁 大连: 大连海事大学, 2019.
|
8 |
马如云, 高承华, 马慧莉, 等. 差分方程理论及其应用 [M]. 北京: 科学出版社, 2019.
|
9 |
KELLEY W G, PETERSON A C. Difference Equations: An Introduction with Appications [M]. San Diego, CA: Academic Press, 2001.
|
10 |
HE T S, ZHOU Y W, XU Y T, et al. Sign-changing solutions for discrete second-order periodic boundary value problems. Bull Malays Math Sci Soc, 2015, 38, 181- 195.
doi: 10.1007/s40840-014-0012-1
|
11 |
BEREANU C, MAWHIN J. Boundary value problems for second-order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ . Difference Equ Appl, 2008, 14, 1099- 1118.
doi: 10.1080/10236190802332290
|
12 |
BEREANU C, MAWHIN J. Existence and multiplicity results for periodic solutions of nonlinear difference equations. J Difference Equ Appl, 2006, 12 (7): 677- 695.
doi: 10.1080/10236190600654689
|