Journal of East China Normal University(Natural Science) ›› 2023, Vol. 2023 ›› Issue (1): 50-59.doi: 10.3969/j.issn.1000-5641.2023.01.006
• Functional Materials • Previous Articles Next Articles
Weitao DOU(), Lin XU*(), Haibo YANG*()
Received:
2022-07-04
Accepted:
2022-09-23
Online:
2023-01-25
Published:
2023-01-07
Contact:
Lin XU,Haibo YANG
E-mail:douweitao123@163.com;lxu@chem.ecnu.edu.cn;hbyang@chem.ecnu.edu.cn
CLC Number:
Weitao DOU, Lin XU, Haibo YANG. Recent progress in the construction and application of self-assembled glycomaterials[J]. Journal of East China Normal University(Natural Science), 2023, 2023(1): 50-59.
1 | BAI Y, LUO Q, LIU J. Protein self-assembly: Via supramolecular strategies. Chemical Society Reviews, 2016, 45 (10): 2756- 2767. |
2 | LAMPEL A. Biology-inspired supramolecular peptide systems. Chem, 2020, 6 (6): 1222- 1236. |
3 | CHATTERJEE A, REJA A, PAL S, et al. Systems chemistry of peptide-assemblies for biochemical transformations. Chemical Society Reviews, 2022, 51 (8): 3047- 3070. |
4 | WANG Y, LOVRAK M, LIU Q, et al. Hierarchically compartmentalized supramolecular gels through multilevel self-sorting. Journal of the American Chemical Society, 2019, 141 (7): 2847- 2851. |
5 | VOORHAAR L, HOOGENBOOM R. Supramolecular polymer networks: Hydrogels and bulk materials. Chemical Society Reviews, 2016, 45 (15): 4013- 4031. |
6 | PRAMANIK P, RAY D, ASWAL V K, et al. Supramolecularly engineered amphiphilic macromolecules: Molecular interaction overrules packing parameters. Angewandte Chemie-International Edition, 2017, 56 (13): 3516- 3520. |
7 | THOTA B N S, URNER L H, HAAG R. Supramolecular architectures of dendritic amphiphiles in water. Chemical Reviews, 2016, 116 (4): 2079- 2102. |
8 | MARTÍNEZ Á, ORTIZ MELLET C, GARCÍA FERNÁNDEZ J M. Cyclodextrin-based multivalent glycodisplays: Covalent and supramolecular conjugates to assess carbohydrate–protein interactions. Chemical Society Reviews, 2013, 42 (11): 4746- 4773. |
9 | GAO R H, HUANG Y, CHEN K, et al. Cucurbit[n]uril/metal ion complex-based frameworks and their potential applications . Coordination Chemistry Reviews, 2021, 437, 213741. |
10 | LIU J, SHENG J, SHAO L, et al. Tetraphenylethylene-featured fluorescent supramolecular nanoparticles for intracellular trafficking of protein delivery and neuroprotection. Angewandte Chemie-International Edition, 2021, 60 (51): 26740- 26746. |
11 | SMITH B A H, BERTOZZI C R. The clinical impact of glycobiology: Targeting selectins, siglecs and mammalian glycans. Nature Reviews Drug Discovery, 2021, 20 (3): 217- 243. |
12 | PINHO S S, REIS C A. Glycosylation in cancer: Mechanisms and clinical implications. Nature Reviews Cancer, 2015, 15 (9): 540- 555. |
13 | SUN X, JAMES T D. Glucose sensing in supramolecular chemistry. Chemical Reviews, 2015, 115 (15): 8001- 8037. |
14 | MIURA Y, HOSHINO Y, SETO H. Glycopolymer nanobiotechnology. Chemical Reviews, 2016, 116 (4): 1673- 1692. |
15 | NAISMITH J H, FIELD R A. Structural basis of trimannoside recognition by concanavalin A. Journal of Biological Chemistry, 1996, 271 (2): 972- 976. |
16 | AHN G, BANIK S M, MILLER C L, et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nature Chemical Biology, 2021, 17 (9): 937- 946. |
17 | DAVIS A P. Biomimetic carbohydrate recognition. Chemical Society Reviews, 2020, 49 (9): 2531- 2545. |
18 | SU L, FENG Y, WEI K, et al. Carbohydrate-based macromolecular biomaterials. Chemical Reviews, 2021, 121 (18): 10950- 11029. |
19 | HE X P, TIAN H. Photoluminescence architectures for disease diagnosis: From graphene to thin-layer transition metal dichalcogenides and oxides. Small, 2016, 12 (2): 144- 160. |
20 | GUO Y, NEHLMEIER I, POOLE E, et al. Dissecting multivalent lectin–carbohydrate recognition using polyvalent multifunctional glycan-quantum dots. Journal of the American Chemical Society, 2017, 139 (34): 11833- 11844. |
21 | GONZÁLEZ-CUESTA M, ORTIZ MELLET C, GARCÍA FERNÁNDEZ J M. Carbohydrate supramolecular chemistry: Beyond the multivalent effect. Chemical Communications, 2020, 56 (39): 5207- 5222. |
22 | PERCEC V, LEOWANAWAT P, SUN H J, et al. Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. Journal of the American Chemical Society, 2013, 135 (24): 9055- 9077. |
23 | FOSTER J C, VARLAS S, COUTURAUD B, et al. Getting into shape: Reflections on a new generation of cylindrical nanostructures’ self-assembly using polymer building blocks. Journal of the American Chemical Society, 2019, 141 (7): 2742- 2753. |
24 | DELBIANCO M, BHARATE P, VARELA-ARAMBURU S, et al. Carbohydrates in supramolecular chemistry. Chemical Reviews, 2016, 116 (4): 1693- 1752. |
25 | GAO C, CHEN G. Exploring and controlling the polymorphism in supramolecular assemblies of carbohydrates and proteins. Accounts of Chemical Research, 2020, 53 (4): 740- 751. |
26 | COOK T R, ZHENG Y R, STANG P J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chemical Reviews, 2013, 113 (1): 734- 777. |
27 | CHAKRABARTY R, MUKHERJEE P S, STANG P J. Supramolecular coordination: Self-assembly of finite two- and three-dimensional ensembles. Chemical Reviews, 2011, 111 (11): 6810- 6918. |
28 | DENG C L, MURKLI S L, ISAACS L D. Supramolecular hosts as: In vivo sequestration agents for pharmaceuticals and toxins. Chemical Society Reviews, 2020, 49 (21): 7516- 7532. |
29 | SCHMIDT B V K J, BARNER-KOWOLLIK C. Dynamic macromolecular material design-The versatility of cyclodextrin-based host–guest chemistry. Angewandte Chemie-International Edition, 2017, 56 (29): 8350- 8369. |
30 | THOMAS B, YAN K C, HU X L, et al. Fluorescent glycoconjugates and their applications. Chemical Society Reviews, 2020, 49 (2): 593- 641. |
31 | JIAO J B, WANG G Z, HU X L, et al. Cyclodextrin-based peptide self-assemblies (spds) that enhance peptide-based fluorescence imaging and antimicrobial efficacy. Journal of the American Chemical Society, 2020, 142 (4): 1925- 1932. |
32 | HU X L, ZANG Y, LI J, et al. Targeted multimodal theranostics: Via biorecognition controlled aggregation of metallic nanoparticle composites. Chemical Science, 2016, 7 (7): 4004- 4008. |
33 | WANG H, LIU Y, XU C, et al. Supramolecular glyco-poly-cyclodextrin functionalized thin-layer manganese dioxide for targeted stimulus-responsive bioimaging. Chemical Communications, 2018, 54 (32): 4037- 4040. |
34 | SHULOV I, RODIK R V, ARNTZ Y, et al. Protein-sized bright fluorogenic nanoparticles based on cross-linked calixarene micelles with cyanine corona. Angewandte Chemie-International Edition, 2016, 55 (51): 15884- 15888. |
35 | LOU X, YANG Y. Pillar[n]arene-based supramolecular switches in solution and on surfaces . Advanced Materials, 2020, 32 (43): 2003263. |
36 | SONG N, KAKUTA T, YAMAGISHI T A, et al. Molecular-scale porous materials based on pillar[n]arenes . Chem, 2018, 4 (9): 2029- 2053. |
37 | FENG W, JIN M, YANG K, et al. Supramolecular delivery systems based on pillararenes. Chemical Communications, 2018, 54 (97): 13626- 13640. |
38 | YU G, MA Y, HAN C, YAO Y, et al. A sugar-functionalized amphiphilic pillar[5]arene: Synthesis, self-assembly in water, and application in bacterial cell agglutination. Journal of the American Chemical Society, 2013, 135 (28): 10310- 10313. |
39 | LIU X, SHAO W, ZHENG Y, et al. GSH-Responsive supramolecular nanoparticles constructed by β-D-galactose-modified pillar[5]arene and camptothecin prodrug for targeted anticancer drug delivery. Chemical Communications, 2017, 53 (61): 8596- 8599. |
40 | LI Q L, SUN Y, REN L, et al. Supramolecular nanosystem based on pillararene-capped cus nanoparticles for targeted chemo-photothermal therapy. ACS Applied Materials and Interfaces, 2018, 10 (35): 29314- 29324. |
41 | SREEDEVI P, NAIR J B, JOSEPH M M, et al. Dynamic self-assembly of mannosylated-calix[4]arene into micelles for the delivery of hydrophobic drugs. Journal of Controlled Release, 2021, 339, 284- 296. |
42 | BEATTY M A, HOF F. Host-guest binding in water, salty water, and biofluids: General lessons for synthetic, bio-targeted molecular recognition. Chemical Society Reviews, 2021, 50 (8): 4812- 4832. |
43 | KIM E, KIM D, JUNG H, et al. Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery. Angewandte Chemie-International Edition, 2010, 49 (26): 4405- 4408. |
44 | GOMES L C, BENEDETTO G D, SCORRANO L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability [J]. Nature Cell Biology, 2011, 13(5): 589-598. |
45 | SUN C, WANG Z, YUE L, et al. Supramolecular induction of mitochondrial aggregation and fusion. Journal of the American Chemical Society, 2020, 142 (39): 16523- 16527. |
46 | ZHENG W, YANG G, SHAO N, et al. CO2 stimuli-responsive, injectable block copolymer hydrogels cross-linked by discrete organoplatinum(Ⅱ) metallacycles via stepwise post-assembly polymerization . Journal of the American Chemical Society, 2017, 139 (39): 13811- 13820. |
47 | DATTA S, SAHA M L, STANG P J. Hierarchical assemblies of supramolecular coordination complexes. Accounts of Chemical Research, 2018, 51 (9): 2047- 2063. |
48 | ZHU Y, ZHENG W, WANG W, et al. When polymerization meets coordination-driven self-assembly: Metallo-supramolecular polymers based on supramolecular coordination complexes. Chemical Society Reviews, 2021, 50 (13): 7395- 7417. |
49 | WANG W, WANG Y X, YANG H B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chemical Society Reviews, 2016, 45 (9): 2656- 2693. |
50 | ZHOU F, LI S, COOK T R, et al. Saccharide-functionalized organoplatinum(Ⅱ) metallacycles. Organometallics, 2014, 33 (24): 7019- 7022. |
51 | DATTA S, SAHA M L, LAHIRI N, et al. Hierarchical self-assembly of a water-soluble organoplatinum(Ⅱ) metallacycle into well-defined nanostructures. Organic Letters, 2018, 20 (22): 7020- 7023. |
52 | YANG G, ZHENG W, TAO G, et al. Diversiform and transformable glyco-nanostructures constructed from amphiphilic supramolecular metallocarbohydrates through hierarchical self-assembly: The balance between metallacycles and saccharides. ACS Nano, 2019, 13 (11): 13474- 13485. |
53 | JIANG H, ZHANG X, CHEN X, et al. Protein lipidation: Occurrence, mechanisms, biological functions, and enabling technologies. Chemical Reviews, 2018, 118 (3): 919- 988. |
54 | FLORES J, WHITE B M, BREA R J, et al. Lipids: Chemical tools for their synthesis, modification, and analysis. Chemical Society Reviews, 2020, 49 (14): 4602- 4614. |
55 | YANG L, WANG X, ZHOU C, et al. Some thoughts about controllable assembly (Ⅱ): Catassembly in living organism. Scientia Sinica Chimica, 2020, 50 (12): 1781- 1800. |
[1] | Wenyan CAI, Yue PAN, Qiwei ZHANG, Yang TIAN. Preparation and photothermal studies on a cucurbit[8]uril-based near-infrared organic supramolecular photothermal agent [J]. Journal of East China Normal University(Natural Science), 2023, 2023(1): 186-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||