Article

Characterization of and insight into the electrochemistry of MoS2

  • ZHANG Xian-Hui ,
  • CHEN Zhen-Lian ,
  • CHEN Xiao-Bo
Expand

Received date: 2014-03-27

  Online published: 2015-05-28

Abstract

By combining experimental methods with first-principles calculations this article reports the determination of the structural characters of MoS2 in the first discharging and charging cycling, where the first stage phase transformation occurs.The significant voltage plateau at 1.1 V is attributed to lithium
insertion on octahedral vacancy sites of 2H-Lix MoS2 with lithium concentration (x)up to 0.56, which corresponds with the calculated voltage and phase stability of MoS$_{2}$. However, the ensuing amorphization for $x$ over 1.0 immediately removes the plateau character from the charging curve. Furthermore, we offer a comparison to LiCoO2 to investigate the physical mechanism of the anode and cathode voltaic

Cite this article

ZHANG Xian-Hui , CHEN Zhen-Lian , CHEN Xiao-Bo . Characterization of and insight into the electrochemistry of MoS2[J]. Journal of East China Normal University(Natural Science), 2015 , 2015(3) : 105 -115 . DOI: 10.3969/j.issn.1000-5641.2015.03.013

References

[1]ZHOU X, WAN L J, GUO Y G. Synthesis of MoS$_{2$ nanosheet--graphene

nanosheet hybrid materials for stable lithium storage[J]. Chemical

Communications, 2013, 49(18): 1838.
[2] SATHISH M, TOMAI T, HONMA I. Graphene anchored with Fe$_3$O$_4$ nanoparticles

as anode for enhanced Li-ion storage[J]. Journal of Power Sources,

2012, 217: 85-91.
[3] CHEN S, WANG Y, AHN H, et al. Microwave hydrothermal synthesis of high

performance tin-graphene nanocomposites for lithium ion batteries

[J]. Journal of Power Sources, 2012, 216: 22-27.
[4] PARK S K, YU S H, WOO S, et al. A facile and green strategy for the

synthesis of MoS$_2$ nanospheres with excellent Li-ion storage

properties [J]. Cryst Eng Comm, 2012, 14(24): 8323.
[5] WINTER M, BRODD R J. What are batteries, fuel cells, and

supercapacitors [J]. Chem Rev 2004, 104: 4245-4269.
[6] CHANG K, CHEN W. In situ synthesis of MoS$_{2$/graphene nanosheet

composites with extraordinarily high electrochemical performance for

lithium ion batteries [J]. Chemical Communications, 2011, 47(14):

4252.
[7] BRIVIO J, ALEXANDER D T L, KIS A. Ripples and layers in ultrathin

MoS$_{2$ embranes [J]. Nano Letters, 2011, 11(12): 5148-5153.
[8] TENNE R, MARGULIS L, GENUT M, et al. Polyhedral and cylindrical

structures of tungsten disulphide [J]. Letters to Nature, 1992, 360:

4-6.
[9] RAMAKRISHNAMATTE H S S, GOMATHI A, MANNA A K, et al. MoS$_{2$ and

WS$_{2$ Analogues of graphene [J]. Angewandte Chemie, 2010,

122(24): 4153-4156.
[10] WHITTINGHAM M S, GAMBLE JR F R. The lithium intercalates of the

transition metal dichalcogenides [J]. Materials Research Bulletin,

1975, 10(5): 363-371.
[11] WHITTINGHAM M S. The role of ternary phases in cathode reactions [J].

Journal of The Electrochemical Society, 1976, 123(3): 315-320.
[12] DINO T, CHRISTIAN P, JAEGERMANN W. Origin of the

electrochemical potential in intercalation electrodes [J]. J Phys

Chem B, 2004, 108: 6093-6099.
[13] WANG Q, LI J. Facilitated lithium storage in MoS$_2$ overlayers supported

on coaxial carbon nanotubes [J]. J Phys Chem C, 2007, 111:

1675-1682.
[14] DING S, ZHANG D, CHEN J S, et al. Facile synthesis of hierarchical

MoS$_{2$ microspheres composed of few-layered nanosheets and their

lithium storage properties [J]. Nanoscale, 2012, 4(1): 95.
[15] KWON J H, AHN H J, JEON M S, et al. The electrochemical properties of

Li/TEGDME/MoS$_{2$ cells using multi-wall carbon nanotubes as a

conducting agent [J]. Research on Chemical Intermediates, 2010,

36(6/7): 749-759.
[16] STEPHENSON T, LI Z, OLSEN B, et al. Lithium ion battery applications of

molybdenum disulfide (MoS$_{2)$ nanocomposites [J]. Energy {\&

Environmental Science, 2014, 7(1): 209.
[17] CATHERINE M. ZELENSKI, DORHOUT P K. Template synthesis of

near-monodisperse [J]. J Am Chem Soc 1998, 120: 734-742.
[18] XIANHUI CHEN, FAN R. Low-temperature hydrothermal synthesis of

transition [J]. Chem Mater, 2001, 13: 802 -805.
[19] DRESSELHAUS M S, THOMAS I L. Alternative energy technologies [J].

Nature, 2001, 414(6861): 332-337.
[20] CHANG K, CHEN W X, MA L, et al. Graphene-like MoS$_2$/amorphous

carbon composites with high capacity and excellent stability as

anode materials for lithium ion batteries [J]. Journal of Materials

Chemistry, 2011, 21(17): 6251.
[21] YANG L, WANG S, MAO J, et al. Hierarchical MoS$_{2$/polyaniline

nanowires with excellent electrochemical performance for lithium-ion

batteries [J]. Advanced Materials, 2013, 25(8): 1180-1184.
[22] MAP Y, HAERING R R. Structural destabilization induced by lithium

intercalation in MoS$_{2$ andrelated compounds [J]. Canadian

Journal of Physics, 1983, 61: 76-84
[23] DU G, GUO Z, WANG S, et al. Superior stability and high capacity of

restacked molybdenum disulfide as anode material for lithium ion

batteries [J]. Chemical Communications, 2010, 46(7): 1106.
[24] GORDON R A, YANG D, CROZIER E D, et al. Structures of exfoliated single

layers of WS$_{2$, MoS$_{2$, and MoSe$_{2$ in aqueous suspension

[J]. Physical Review B, 2002, 65(12): 125407.
[25] CHEN X, CHEN Z, LI J. Critical electronic structures controlling phase

transitions induced by lithium ion intercalation in molybdenum

disulphide [J]. Chinese Science Bulletin, 2013, 58(14): 1632-1641.
[26] CHEN X, HE J, SRIVASTAVA D, et al. Electrochemical cycling

reversibility of LiMoS$_{2$ using first-principles calculations

[J]. Applied Physics Letters, 2012, 100(26): 263901.
[27] JOHN P, KIERON B, ERNZERHOF M. Generalized gradient

approximation made simple [J]. Phys Rev Lett, 1996, 77: 3865-3868.
[28] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the

liquid-metal-amorphous-semiconductor transition in germanium [J].

Physical Review B, 1994, 49(20): 251-269.
[29] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio

total-energy calculations using a plane-wave basis set [J]. Physical

Review B, 1996, 54(16): 169-186.
[30] BLOCHL P E. Projector augmented-wave method [J]. Physical Review B,

1994, 50(24): 953-979.
[31] GRIMME S. Semiempirical GGA-type density functional constructed with a

long-range dispersion correction [J]. Journal of Computational

Chemistry, 2006, 27(15): 1787-1799.
[32] CHEN Z, LI J, ZHANG Z. First principles investigation of electronic

structure change and energy transfer by redox in inverse spinel

cathodes LiNiVO$_{4$ and LiCoVO$_{4$ [J]. Journal of Materials

Chemistry, 2012, 22(36): 18968.
[33] NEUGEBAUER J, SCHEFFLER M. Adsorbate-substrate and adsorbate-adsorbate

interactions of Na and K adlayers on Al(111) [J]. Physical Review B,

1992, 46(24): 16067-16080.
[34] MAKOV G, PAYNE M. Periodic boundary conditions in ab initio

calculations [J]. Physical Review B, 1995, 51(7): 4014-4022.
[35] ZHANG C, WU H B, GUO Z, et al. Facile synthesis of carbon-coated

MoS$_{2$ nanorods with enhanced lithium storage properties [J].

Electrochemistry Communications, 2012, 20: 7-10.
[36] HWANG H, KIM H, CHO J. MoS$_{2$ nanoplates consisting of disordered

graphene-like layers for high rate lithium battery anode materials

[J]. Nano Letters, 2011, 11(11): 4826-4830.
[37] DAS S K, MALLAVAJULA R, JAYAPRAKASH N, et al. Self-assembled

MoS$_{2$-carbon nanostructures: influence of nanostructuring and

carbon on lithium battery performance [J]. Journal of Materials

Chemistry, 2012, 22(26): 12988.
[38] FENG C, MA J, LI H, et al. Synthesis of molybdenum disulfide

(MoS$_{2)$ for lithium ion battery applications [J]. Materials

Research Bulletin, 2009, 44(9): 1811-1815.
[39] FANG X, HUA C, GUO X, et al. Lithium storage in commercial MoS$_{2$ in

different potential ranges [J]. Electrochimica Acta, 2012, 81:

155-160.
[40] LIU C, YU Z, NEFF D, et al. Graphene-based supercapacitor with an

ultrahigh energy density [J]. Nano Letters, 2010, 10(12): 4863-4868.
[41] GOODENOUGH J B, KIM Y. Challenges for rechargeable li batteries [J].

Chemistry of Materials, 2010, 22(3): 587-603.
[42] CHEN J, TAO Z L, SUO L. Lithium intercalation in

open-ended TiS$_{2 $ nano-tubes [J]. Angewandte Chemie, 2003,

115(19): 2197-2201.
[43] JULIEN C M. Lithium intercalated compounds charge transfer and related

properties [J]. Materials Science and Engineering R, 2003, 40:

47-102.
[44] DAHN J R, ZHENG T, LIU Y, et al. Mechanisms for lithium insertion in

carbonaceous materials [J]. Science, 1995, 270(5236): 590-593.
Outlines

/