This paper investigated the  estimates of solutions to one-dimensional convection-diffusion equations frac{partial c}{partial t}+ufrac{partial c}{partial x}=Dc_{xx}+c_{xt}-(c{2})_{x}, using Green's function method, frequency decomposition and energy estimates. We found that the decay rate of the solution is the same as that for heat fusion operator
							
							
														
														
														
														
						 
					 	
										
					
						
						
							
																																		ZENG   Yan
																																				, 
																		XIN  Gu-Yu
																																	. vec  estimates of solutions to the Cauchy problem of[2mm] one-dimensional convection-diffusion equations[J]. Journal of East China Normal University(Natural Science), 2016
																, 2016(3)
																								: 21
																-26
																								. 
																 DOI: 2016.03.003
															
						 
					 
					
					
					 
					
										
										
										
					
										
										
										
										
						
						
							[1]QAFSAOUI M. Large time behavior for nonlinear higher order convection-diffusion equations [J]. Ann I H Poincaré-AN, 2006, 23: 911-927.
[2]ESCOBEDO M, ZUAZUA E. Large time behavior for convection-diffusion equations in R{n [J]. J Func Anal, 1991, 100(1): 119-161.
[3]徐红梅, 曾妍. 一维对流扩散方程解的2衰减估计 [J].武汉大学学报(理学版), 2015, 61(6): 573-576.
[4]DENG S J, WANG W K, ZHAO H L. Existence theory and  estimates for the solution of nonlinear viscous wave equation [J]. Nonlinear Analysis: Real World Applications, 2010, 11(5): 4404-4414.
[5] EVANS L C. Partial Differential Equations [M]. New York:American Mathematical Society, 2010. end{CKWX